• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

3D, Hall-effect sensor operates up to 20 kSPS at lower power

October 13, 2021 By Aimee Kalnoskas

Texas Instruments introduced the industry’s most accurate 3D Hall-effect position sensor. With the TMAG5170, engineers can achieve uncalibrated ultra-high precision at speeds up to 20 kSPS for faster and more accurate real-time control in factory automation and motor-drive applications. The sensor also provides integrated functions and diagnostics to maximize design flexibility and system safety, while using at least 70% less power than comparable devices. The TMAG5170 is the first device in a new family of 3D Hall-effect position sensors that will meet a wide range of industrial needs – from ultra-high performance to general purpose.

The TMAG5170 is the industry’s first 3D Hall-effect position sensor to provide a low 2.6% full-scale total error at room temperature. It also features best-in-class drift of 3% total error – 30% lower than the next closest competitor – along with at least 35% lower error than comparable devices in the presence of a cross-axis field. Together, these features enable the TMAG5170 to deliver higher accuracy than any other 3D Hall-effect position sensor, eliminating the need for end-of-line calibration and off-chip error compensation, and simplifying system design and manufacturing. To achieve faster, more accurate real-time control, the sensor supports measurements as high as 20 kSPS for low-latency throughput of high-speed mechanical motion.

The TMAG5170 eliminates the need for off-chip computation and enables flexible sensor and magnet orientations by integrating features such as an angle calculation engine, measurement averaging, and gain and offset compensation. These features simplify design and maximize system flexibility, enabling faster control loops, reduced system latency and simpler software development – regardless of sensor placement. The sensor’s integrated computation functions also reduce the system’s processor load by as much as 25%, enabling engineers to use general-purpose microcontrollers (MCUs) such as TI’s low-power MSP430 MCUs to minimize overall system cost.

Additionally, the TMAG5170 increases safety with a unique set of smart diagnostic capabilities – such as checks for communication, continuity and internal signal path – as well as configurable diagnostics for the external power supply, magnetic field and system temperature. This allows engineers to customize a safety scheme at both the chip and system level for long-term reliability and lower design costs. 

The TMAG5170 provides multiple operation modes to reduce power consumption by at least 70% compared to other linear 3D Hall-effect position sensors while maintaining system performance. These configurable modes enable engineers to optimize power across a 1-SPS to 20-kSPS sampling range for battery-powered devices or light-duty modes where system efficiency is paramount.

The TMAG5170 is available now from TI.com in an eight-pin, 4.9-mm-by-3-mm very thin shrink small-outline package (VSSOP). Pricing starts at US$1.139 in 1,000-unit quantities. Multiple payment and shipping options are available on TI.com.

You may also like:


  • Magnetics for Power over Ethernet

  • Basics of motion-control profiles, Part 3: Implementations

  • Measuring the Hall effect

  • What are Hall effect sensors?
DesignFast Banner version: 22e7f758

Filed Under: Applications, Industrial, Robotics/Drones, Sensor Tips Tagged With: texasinstrumentsinc

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 7
See More >

Current Digital Issue

April 2022 Special Edition: Internet of Things Handbook

How to turn off a smart meter the hard way Potential cyber attacks have a lot of people worried thanks to the recent conflict in Ukraine. So it might be appropriate to review what happened when cybersecurity fi rm FireEye’s Mandiant team demonstrated how to infiltrate the network of a North American utility. During this…

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Help with Verilog replicate operator
  • ESP Serial Communication Problem with RS232
  • How to mark layer comments in CAP of spef file using StarRC
  • MAX5389 resetting by noise
  • Simulation of resonator in HFSS

RSS Current Electro-Tech-Online.com Discussions

  • Will Header and socket hold this PCB OK?
  • Relaxation oscillator with neon or...
  • software PWM
  • MPlab8 remove page breaks in list file
  • ATOM Diy module

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy