• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

A Makerspace for Students, by Students

June 23, 2016 By Alissa Mallinson, Mechanical Engineering, MIT News Office

If there is one word that embodies the spirit of MakerWorks, the all-access Department of Mechanical Engineering (MechE) makerspace, it would have to be “students.” Not “maker,” although of course making is the cornerstone of the space; not “fun” or “cool,” although according to members it’s both of those things; not even “prototyping,” despite the fact that a majority of students use it for that.

That’s because MakerWorks, a soup-to-nuts community space offering both fabrication and measurement tools, is run by and for students.

In fact, MakerWorks was student-initiated too. With the support and guidance of Professor (and unofficial MechE “maker czar”) Martin Culpepper and Professor Anette Peko Hosoi, who is also MechE’s associate department head for education, MechE students have recruited mentors, identified equipment requirements, developed safety procedures, solicited funding, managed staffing, designed community events, and much more. The process of developing the shop was a learning experience unto itself.

The people

A microcosm of the maker movement writ large, MIT is well known for its commitment to hands-on learning. From hackathons to Hyperloop, Maker Faires to robot competitions, MIT’s making state of mind is the natural outgrowth of its original form, one that is inextricably linked to making, building, and doing.

“At MIT we celebrate the artist, the scholar, and the smith,” says Culpepper, who oversees Project Manus, MIT’s effort to upgrade makerspaces and foster maker communities on campus.

As such, the Institute is home to several student-serving makerspaces, including the MIT Edgerton Center, the MIT Hobby Shop, and Beaver Works, to name just a few. Overall, there are more than 130,000 square feet of makerspaces at MIT.

MakerWorks began with three graduate students who were eager to add an all-access, student-run space to MIT’s repertoire. They quickly became a group of eight, which continued to grow as interest in such a space gained momentum. The founders wanted to create a place where hobby and research machining didn’t interfere with the classwork that was taking place in some of the other shops and labs around campus, and where undergrads and graduate students could take advantage of the skills, experience, and accessibility of other students.

The MakerWorks team currently comprises 35 graduate students, called mentors, who staff and administer the shop. The space has almost 600 total users, all of whom have attended Maker Mondays, a required introductory session that trains newcomers on policies and basic tools. Those 600 users are split approximately 50/50 between undergraduates and graduates. Many graduate students utilize the space to quickly prototype parts for their research, and undergrads use it for research needs as well.

The engineering

While students are encouraged to use the space to make personal creations, too — for example, a team of mentors extensively used MakerWorks to build “Sawblaze,” a bot that competed on the recent reboot of ABC’s “Battlebots” — the shop’s founders also encourage more than making for its own sake.

“We want MakerWorks not only to be a makerspace but also to be known as a place for good engineering,” says Raghav Aggarwal SM ’16, a member of the MakerWorks administrative team. “That’s why the graduate student mentors are a great resource. They provide a very diverse body of knowledge and experience.”

“It’s important to give students a place to learn how to build well and develop better building practices,” says PhD candidate Dan Dorsch ’12, SM ’15, one of MakerWorks’ co-founders. “Having both analytical skills and a strong understanding of how products are designed and manufactured empowers engineers.”

The tools

It’s this desire to enable great engineering that also sparked Culpepper, an early champion of the space, to recommend adding a measurement and validation section to the shop.

“MakerWorks is one of the first makerspaces at MIT to offer prediction tools and the ability to plan the engineering process through the combination of design software, rapid prototyping, and validation tools,” says Dorsch. “It intentionally gives the space a significant engineering focus rather than offering something more similar to a hacker space.”

MakerWorks also houses 12 fundamental machines — in many cases, multiples of each — including a mill, a lathe, a water-jet, a laser cutter, a router, a 3-D printer, a bandsaw, a drill press, and more. Each of the 35 mentors works one two-hour shift per week and is required to teach at least one machine training session per week. They are also responsible for maintaining their appointed machine and keeping the area clean. 

The education

Through interaction with the space’s users, the mentors are often learning a great deal themselves. They are exposed to a plethora of engineering and making projects they wouldn’t otherwise see, and are simultaneously learning from each other as well.

“People say that teaching is the best way to learn, and I think this is a perfect example,” says Dorsch.

Expanding MakerWorks’ educational opportunities even further, Culpepper has created a symbiotic relationship with the Martin Trust Center for MIT Entrepreneurship. The Trust Center, which provided funding for the development of MakerWorks, also created ProtoWorks in parallel, a satellite space for Sloan School of Management students to quickly prototype products that are part of their own entrepreneurial projects and startups.

Together the two spaces have built a community of engineers and entrepreneurs who benefit from each other’s expertise in their respective fields: MechE students can brainstorm and bounce business ideas off their fellow management classmates, and Sloan students are able to utilize the making skills of fellow engineers to physically manifest their product ideas.

“Part of the goal in building community is getting exposure to other people’s projects. This inspiration can lead to novel personal or research projects,” says Dorsch.

Culpepper adds, “The best way to understand how a physical system works is to build it. I’m very excited that we’ve been able to give both MechE and Sloan School students another place to do that — for student mentors through teaching and for users through practice.”

You Might Also Like

Filed Under: STEM

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Five challenges for developing next-generation ADAS and autonomous vehicles

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Cascade Amplifier at High Frequency
  • Keysight ADS Oscillator using Negative Resistance method
  • How to simulate a microstrip gap with such a reference plane
  • UART Basic Before Writing Code
  • Analog (op amp circuit in cadence)

RSS Current Electro-Tech-Online.com Discussions

  • Fun with AI and swordfish basic
  • Epson crystal oscillators
  • Simple LED Analog Clock Idea
  • Microinverters and storeage batteries?
  • PIC KIT 3 not able to program dsPIC
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy