• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

A New Model Of Frequency Combs In Optical Microresonators

January 26, 2018 By Lomonosov Moscow State University

A team from the Faculty of Physics of the Lomonosov Moscow State University, together with scientists from the Russian Quantum Center, have developed a new mathematical model that describes the process of soliton occurrence in optical microresonators. In the future, this could lead to universal optical oscillators and other advancements. The work was published in Optics Express.

In 2017, a team of scientists led by Mikhail Gorodetsky, a professor of the Faculty of Physics, MSU, developed a method for controlling the number of solitons in so-called optical microresonators. Microresonators are the basis of modern photonics, a science that specializes in optical signals. A resonator is a ring-shaped trap for light in which a photon grazingly rebounds many times, moving in circles.

Solitons are solitary localized waves that appear in resonators if the refraction index of a resonator’s building material is nonlinear and is a certain function of the wavelength. In this case, a laser beam, after making a number of rounds inside a resonator, splits into separate solitons (i.e., auto-focuses and turns into femtosecond-long pulses).

When using these resonators, scientists are especially interested in the so-called soliton “optical combs”—created in resonators having a typical comb-shaped optical spectrum in which the distance between two adjacent peaks is equal to the inverse time the light requires to make the whole circle. Such combs may be used in solving a number of applied problems.

The problem is that the occurrence of useful combs in a resonator based on magnesium fluoride (MgF2) or fused silica is associated with a number of harmful effects. These include the so-called combinational or Raman scattering. It is caused by oscillations of separate molecules in a substance. After reaching the surface of such a substance, light is re-emitted with another wavelength. The effect has a threshold, depending on the intensity of radiation and the composition of the substance, and causes the destruction of solitons and spectrum distortion. Scientists usually don’t dive deeply into the nature of this effect when creating equations that describe effects in microresonators, and only apply some corrections to equations. In the new paper, the team of researchers studied the nature of this effect and developed new equations that describe the generation of optical combs taking Raman scattering into account. The system of equations may be used for numerical simulation of the effects that occur in optical resonators.

“We used these equations to check the behavior of light in resonators with anomalous dispersion and obtained previously known effects. Thus, we’ve tested our theory,” explained Professor Gorodetsky. “After that we applied it to combs with normal dispersion that have platicons (pulses with plateau-shaped peaks of spectrum) instead of solitons.”

The new model allowed the scientists to predict a number of previously unknown effects, for example, when regular dispersion pulses are greatly distorted due to Raman scattering—they are destroyed, start to bifurcate, etc. The new mathematical tools are important for scientists to understand how to obtain optical combs in environments with regular dispersion. Further experiments are expected to prove the conclusions on the example of platicons.

“Currently, there are only a few labs in the world that study soliton combs. Together with our Swiss colleagues, we were the first to demonstrate them. They are widely used, in particular in high-accuracy spectroscopy, to increase the speed of information exchange, in telecom networks, and in LIDAR,” explained Gorodetsky. “Some time ago, German scientists used optical combs to accurately determine the shape of a moving bullet and managed to see how it changes due to air resistance.”

Optical combs offer prospects of developing optical oscillators based on just one chip and emitting light with any preset frequency, which is impossible for modern lasers and other generators. Moreover, they may serve as a basis for pocket-type spectrometers to analyze the composition of substances. Currently, this task requires quite massive devices.

You Might Also Like

Filed Under: Uncategorized

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Five challenges for developing next-generation ADAS and autonomous vehicles

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Discrete IrDA receiver circuit
  • No Output Voltage from Voltage Doubler Circuit in Ansys Nexxim (Harmonic Balance Simulation)
  • ISL8117 buck converter blowing up
  • I²C Ground Isolation with Series Battery Cells (ULIN13-01 + PIC18LF4520)
  • Mean offset increase in post-layout simulation of clocked comparator

RSS Current Electro-Tech-Online.com Discussions

  • Kawai KDP 80 Electronic Piano Dead
  • using a RTC in SF basic
  • Saga 1400sv vinyl cutter motherboard issue
  • Unknown smd. Any ideas?
  • Display TFT ST7789 (OshonSoft Basic).
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy