• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

A New Way To Enhance The Capacity Of Memory Devices

September 22, 2017 By Phys.org

A Tomsk Polytechnic University study reveals how topological vortices found in low-dimensional materials can be both displaced and erased and restored again by the electrical field within nanoparticles. This may open exciting opportunities for memory devices or quantum computers in which information will be encrypted in the characteristics of topological vortices.

Scientists from TPU and international collaborators have discovered unusual self-organization of atoms in the volume of nanoparticles and have learned to control it via an electric field. Such controlled nanoparticles can be used to generate capacious non-volatile random access memory (NRAM), quantum computers and other next-generation electronics.

The main author is Dmitriy Karpov, engineer of the Department of General Physics, TPU, who explains that in modern materials science, the defects of matter are divided into two large groups. The first group includes classical, well-studied defects, when atoms in matter are mechanically disordered, i.e., atoms are either removed or inserted into the lattice. In the other group, the spatial organization of the lattice itself changes and such defects are called topological.

Topological defects can strongly influence matter, making it superfluid or superconductive, and therefore, it is very important to study them. Topological defects can be found only in low-dimensional materials—two-dimensional nanorods and nanofilms (just several atoms thick) and one-dimensional nanodots or nanoparticles, which are spherical particles consisting of several tens or hundreds of identical atoms.

“One of the important topological defects is a topological vortex which looks like a discernible twisting caused by a small displacement of all atoms. The vortex core is a nanostrand which can be both displaced by the field, and erased and restored again within nanoparticles,” explains Edwin Fohtung, Professor of Los Alamos National Laboratory and New Mexico State University .

The scientists studied barium titanate nanoparticles whose internal structure was visualized with the help of penetrating X-ray radiation from the synchrotron Advanced Photon Source (Chicago, USA). They obtained an image of the volume of nanoparticles with a resolution of 18 nanometers, which enabled them to analyze the slightest changes in the structure. As a result, the researchers showed that an external electric field can displace the core of the topological vortex inside the nanoparticle, and when the field is removed, it returns to its original position.

Modern components of electronics are gradually becoming smaller. This can significantly influence the efficiency of devices, which will be significantly reduced due to quantum effects. One way to circumvent these limitations is to use topological vortices. Thus, they can be used to generate high density NRAM or quantum computers in which information will be encrypted in the characteristics of topological vortices.

“All in all, the possibility to control and adjust topological vortices in nanoparticles is important for the creation of new electronics,” concludes Dmitriy Karpov.

You Might Also Like

Filed Under: Uncategorized

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

Beyond the drivetrain: sensor innovation in automotive

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Looking for spice model for Innoswitch3-EP
  • RFsoc 4x2 DAC0/ADC structure behind parameters in code
  • Colpitts oscillator
  • modelsim not run the clock long enough
  • RF-DC rectifier impedance matching

RSS Current Electro-Tech-Online.com Discussions

  • Wish to buy Battery, Charger and Buck converter for 12V , 2A router
  • Electronic Components
  • Need Help Figuring Out the Schematics Of Circuit Board
  • applying solder paste from a jar
  • Question i-nears headphones magnetic drivers
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy