• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Advancing Self-Driving Car Design

July 14, 2016 By University of Massachusetts at Amherst

University of Massachusetts Amherst computer science graduate students Kyle Wray and Luis Pineda, with their professor Shlomo Zilberstein, today described a new approach to managing the challenge of transferring control between a human and an autonomous system, in a paper they presented at the International Joint Conference on Artificial Intelligence in New York City.

Their theoretical work, tested in experiments in a driving simulator, should help to advance the development of safe semi-autonomous systems (SAS) such as self-driving cars. Such systems rely on human supervision and occasional transfer of control between the human and the automated systems, Zilberstein explains. With substantial support from the National Science Foundation and the auto industry, his lab is working on new approaches to SAS that are controlled collaboratively by a person and a machine while each capitalizes on their distinct abilities.

“Self-driving cars are coming,” says Zilberstein, “but the world is fairly chaotic and not many autonomous systems can cope with that yet. My sense is that we’re pretty far from having fully autonomous systems in cars.” This is because artificial intelligence sensing and decision-making techniques are still limited and no matter how much training and design are used, there is no sufficiently accurate model of the real world that allows such systems to operate reliably.

For example, he suggests, “Trains might be next as a candidate for autonomy, but even then, with a downed branch on the track during a storm, a person may be needed to judge how to proceed safely.”

The researcher says the example highlights a significant challenge that SAS research must address, that is, transferring control quickly, safely and smoothly between the system and the person supervising it. Most systems designed to date do not accomplish this. “Paradoxically,” says Zilberstein, “as we introduce more autonomy, people become less engaged with the operation of the system and it becomes harder for them to take over control.” In the paper presented today, to be published in the conference proceedings, the researchers establish precise requirements to assure that controlling entities can act reliably.

They apply the theoretical framework to semi-autonomous vehicles using a hierarchical or step-wise approach with two levels of reasoning. The high-level route planning takes into account the occasional need to transfer control, without planning it in detail. The actual transfer of control is managed by a detailed, “high-fidelity” model that notifies drivers of their expected actions and constantly monitors their reactions. It can handle situations by stopping the vehicle, for example, when the driver does not respond to the request to take over control, Zilberstein explains. Their analysis of the integrated model shows that it provides important safety guarantees.

The researchers show how to apply this general framework to SAS for vehicles and demonstrate that it maintains what they call “live state.” Intuitively, this yields what they call “strong semi-autonomy,” meaning that the system is never placed under the responsibility of an entity that is not prepared to handle the situation. Their experiments show that this approach uses both human and vehicle strengths well.

Zilberstein and colleagues plan to integrate this approach using a large-scale realistic driving simulator in collaboration with professors Donald Fisher and Siby Samuel, as well as postdoctoral fellow Timothy Wright of the Arbella Human Performance Lab in UMass Amherst’s College of Engineering.

Developing reliable ways to transfer control back to the driver when an anomaly is detected is a crucial component of deploying self-driving cars. This work will allow the researchers to validate the new approach with human drivers controlling a self-driving car while performing a variety of tasks.

You Might Also Like

Filed Under: Automotive/Transportation

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Simple Active Bandpass Filter Oscillates
  • TMP117 > Can not read temperature on LCD
  • Power switches to replace Mechanical Relay in the HV pulse tester setup
  • Output return loss mismatch
  • Does mobility carrier ratio changes with Wn? (0.18um) inverter design

RSS Current Electro-Tech-Online.com Discussions

  • Guitar electronics project
  • can a AT89C51 be used as a rom?
  • JBL charge 4 dead motherboard?
  • going out on a limb and praying the schematic is correct
  • Actin group needed for effective PCB software tutorials
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy