• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Atoms Queue up for Quantum Computer Networks

January 5, 2015 By University of Copenhagen - Niels Bohr Institute

Jean Babtiste Béguin and Jürgen Appel in the quantum optics laboratory in the basement of the Niels Bohr Institute, where they did the experiments. Image credit: Ola Jakup Joensen, Niels Bohr InstituteIn order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing.

To do this, researchers from the Niels Bohr Institute have developed a method with a trap that captures the atoms along an ultra thin glass fiber, where the atoms can be controlled. The results are published in the scientific journal, Physical Review Letters.

The research is carried out in the quantum optics laboratory in the basement of the Niels Bohr Institute in Copenhagen. The underground laboratory is set back from the road so there are no vibrations from traffic. Here, the researchers have designed experiments in which they can perform ultrasensitive trials with quantum optics.

“We have an ultra-thin glass fiber with a diameter of half a micrometer (a hundred times smaller than a strand of hair). Along this glass fiber we capture cesium atoms. They are cooled down to 100 micro Kelvin using a laser – this is almost absolute zero, which is equivalent to minus 273 degrees Celsius.

This system acts like a trap that holds the atoms on the side of the glass fiber,” explains Jürgen Appel, Associate Professor in the research group Quantop at the Niels Bohr Institute, University of Copenhagen.

Atoms and Light Linked Together

The experiment is carried out in a glass cell with very low pressure. In here is an ultra-thin glass fiber and a gas of cesium atoms. Using lasers and a magnetic field, the atoms are cooled down to almost absolute zero (minus 273 degrees Celsius) and the atoms gather as a cloud around the glass fiber. Then two laser beams with very different frequencies are transmitted into the fiber, thereby capturing atoms above the fiber surface. By measuring the difference in the speed of light for two other light beams on each side of the atoms' absorption line, you can measure the number of atoms. Image credit: Ola Jakup Joensen, Niels Bohr InstituteWhen light is transmitted through the glass fiber thread, the light will also move along the surface because the fiber is thinner than wavelength of the light. This creates strong interaction between the light and the atoms sitting securely above the surface of the fiber.

“We have developed a method where we can measure the number of atoms. We send two laser beams with different frequencies through the glass fiber. If there were no atoms on the fiber, the speed of light would be the same for both light beams. However, the atoms affect the two frequencies differently and by measuring the difference in the speed of light for the two light beams on each side of the atoms’ absorption lines, you can measure the number of atoms along the fiber. We have shown that we can hold 2,500 atoms with an uncertainty of just eight atoms,” says Jürgen Appel.

These are fantastic results. Without this method, you would have to use resonant light (light that the atoms absorb) and then you would scatter photons, which would kick the atoms out of the trap, says Jürgen Appel and explains that with this new method they can measure and control the atoms so that only 14 percent are kicked out of the trap and are lost.

“Our resolution is only limited by the natural quantum noise (the laser light’s own minimal fluctuations) so our method could be used for so-called entangled states of atoms along the fiber. Such an entangled system with strongly interacting atoms and light is of great interest for future quantum computer networks,” notes Jürgen Appel.

You Might Also Like

Filed Under: Artificial intelligence

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

Beyond the drivetrain: sensor innovation in automotive

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Core loss in output inductor of 500W Two Transistor forward?
  • Question LCD LED IPS display
  • Colpitts oscillator
  • BiSS-C Behavior Without Slave (dsPIC33AK128MC106 + iC-MB4)
  • GanFet power switch starts burning after 20 sec

RSS Current Electro-Tech-Online.com Discussions

  • Need Help Figuring Out the Schematics Of Circuit Board
  • Wish to buy Battery, Charger and Buck converter for 12V , 2A router
  • applying solder paste from a jar
  • Question i-nears headphones magnetic drivers
  • An Update On Tarrifs
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy