• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Automotive reference flow streamlines SoC design for ISO 26262 compliance

October 15, 2020 By Redding Traiger

Synopsys, Inc. and Samsung Foundry announced the release of a validated automotive reference flow to streamline SoC hardware design for in-system test, implementation, verification, timing, and physical signoff for ISO 26262 compliance. This reference flow is targeted for automotive safety integrity level (ASIL) D autonomous driving and advanced driver-assistance systems (ADAS) applications. In close collaboration with Samsung, the optimized Synopsys automotive reference flow provides SoC architects, designers, and verification engineers with complete differentiated design and IP solutions that deliver complex functional safety (FuSa) analysis, implementation, and verification capabilities. The automotive reference flow utilizes Synopsys’ comprehensive automotive design flow and ASIL D-compliant functional safety processor IP.

ISO 26262 compliance complicates predictable execution of the automotive SoC project, by necessitating manual time-consuming flows which lack scalability, incur significant work overhead, and consume limited machine resources. These challenges drive project managers and designers to adopt new methodologies to reduce resource requirements, minimize manual tasks, and improve the quality of results (QoR). Through close collaboration, Samsung Foundry and Synopsys delivered a comprehensive automotive reference flow optimized to provide the best possible productivity and QoR.

Synopsys’ comprehensive automotive design flow includes unified functional safety verification and native automotive solutions, enabling designers to prove at the planning and implementation phases that their chip safety architecture can achieve target ASILs. Designers can perform FMEA and FMEDA with best-in-class technologies for unified fault campaign management. As part of the shift-left approach introduced by Synopsys, early functional safety analysis at RTL or gate-level can quickly identify candidates for triple-mode redundancy (TMR) and dual-core lock-step (DCLS) redundancy and estimate metrics for target ASIL. Synopsys offers the industry’s first self-test solution instantiated directly into the RTL that tolerates indeterminate digital states while rapidly achieving high fault coverage. Synopsys’ native automotive solutions based on FuSa intent provide the industry’s most comprehensive feature set to implement FuSa mechanisms, such as TMR, DCLS, and Finite State Machine (FSM), perform formal verification, and check and report that safety mechanisms are properly implemented. Comprehensive digital/analog fault injection and simulation can be performed to produce reliable metrics for FMEDA and roll-up. Synopsys solutions are independently ISO 26262 certified to accelerate the deployment and qualification process for ASIL D designs.

The Synopsys functional safety processor integrates hardware safety features, such as redundant processors, error-correcting code (ECC), parity protection, safety monitors, and user-programmable windowed watchdog timers, to detect system errors. Comprehensive documentation related to safety, including enhanced-safety manuals, FMEDA, and design failure modes and effects analysis (DFMEA) reports accelerating SoC-level functional safety assessments. The processor is supported by Synopsys’ ASIL D-compliant toolkit, helping software developers accelerate the development of ISO 26262-compliant codes. In addition, Synopsys offers a broad portfolio of an automotive-grade interface, processor, and foundation IP that can help designers achieve high levels of functional safety, security, and reliability.

You may also like:


  • Functional safety processor meets requirements for ISO 26262 ASIL D…

  • Embedded basics Part 2: ISO 26262 functional safety for MCUs
DesignFast Banner version: 33defd13

Filed Under: Microcontroller Tips Tagged With: samsung, synopsysinc

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 7
See More >

Current Digital Issue

Our second 5G Handbook is now available

Featuring 15 articles, the 2022 5G Handbook looks at private networks, timing, connectivity, latency, mmWaves, test, and other topics.

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Using LTspice to check Current sense transformer reset?
  • Plotting E_theta and E_phi using the fields calculator in HFSS
  • SRF04 module measure distance
  • Motherboard - worst case scenario
  • Will Wifi throughput be affected by RSSI (attenuation) in my setup?

RSS Current Electro-Tech-Online.com Discussions

  • Are Cross-wind compensation and Road crown compensation functions inputs to LKA function?
  • Interfacing ZMOD4410 with Arduino UNO
  • Help diagnosing a coffee maker PCB
  • Capacitor to eliminate speaker hum
  • Identify a circuit.

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy