• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
      • Power Electronics & Programmable Power
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Autonomous Robots Divvy Up Assembly Tasks on the Fly

May 28, 2015 By Larry Hardesty, MIT News Office

MIT researchers tested the viability of their algorithm by using it to guide a crew of three robots in the assembly of a chair. Image credit: Dominick ReuterToday’s industrial robots are remarkably efficient — as long as they’re in a controlled environment where everything is exactly where they expect it to be.

But put them in an unfamiliar setting, where they have to think for themselves, and their efficiency plummets. And the difficulty of on-the-fly motion planning increases exponentially with the number of robots involved. For even a simple collaborative task, a team of, say, three autonomous robots might have to think for several hours to come up with a plan of attack.

This week, at the Institute for Electrical and Electronics Engineers’ International Conference on Robotics and Automation, a group of MIT researchers were nominated for two best-paper awards for a new algorithm that can significantly reduce robot teams’ planning time. The plan the algorithm produces may not be perfectly efficient, but in many cases, the savings in planning time will more than offset the added execution time.

The researchers also tested the viability of their algorithm by using it to guide a crew of three robots in the assembly of a chair.

“We’re really excited about the idea of using robots in more extensive ways in manufacturing,” says Daniela Rus, the Andrew and Erna Viterbi Professor in MIT’s Department of Electrical Engineering and Computer Science, whose group developed the new algorithm. “For this, we need robots that can figure things out for themselves more than current robots do. We see this algorithm as a step in that direction.”

Rus is joined on the paper by three researchers in her lab — first author Mehmet Dogar, a postdoc, and Andrew Spielberg and Stuart Baker, both graduate students in electrical engineering and computer science.

Watch the MIT researchers’ team of robots collaborating to build a chair. The robots autonomously plan how to grasp the parts and how to position their bases.

Courtesy of the researchers

Grasping consequences

The problem the researchers address is one in which a group of robots must perform an assembly operation that has a series of discrete steps, some of which require multirobot collaboration. At the outset, none of the robots knows which parts of the operation it will be assigned: Everything’s determined on the fly.

MIT postdoc Mehmet Dogar (left) and graduate student Andrew Spielberg pose robots to illustrate the collaborative assembly program they developed with Professor Daniela Rus. Image credit: Dominick ReuterComputationally, the problem is already complex enough, given that at any stage of the operation, any of the robots could perform any of the actions, and during the collaborative phases, they have to avoid colliding with each other. But what makes planning really time-consuming is determining the optimal way for each robot to grasp each object it’s manipulating, so that it can successfully complete not only the immediate task, but also those that follow it.

“Sometimes, the grasp configuration may be valid for the current step but problematic for the next step because another robot or sensor is needed,” Rus says. “The current grasping formation may not allow room for a new robot or sensor to join the team. So our solution considers a multiple-step assembly operation and optimizes how the robots place themselves in a way that takes into account the entire process, not just the current step.”

The key to the researchers’ algorithm is that it defers its most difficult decisions about grasp position until it’s made all the easier ones. That way, it can be interrupted at any time, and it will still have a workable assembly plan. If it hasn’t had time to compute the optimal solution, the robots may on occasion have to drop and regrasp the objects they’re holding. But in many cases, the extra time that takes will be trivial compared to the time required to compute a comprehensive solution.

Principled procrastination

The algorithm begins by devising a plan that completely ignores the grasping problem. This is the equivalent of a plan in which all the robots would drop everything after every stage of the assembly operation, then approach the next stage as if it were a freestanding task.

Then the algorithm considers the transition from one stage of the operation to the next from the perspective of a single robot and a single part of the object being assembled. If it can find a grasp position for that robot and that part that will work in both stages of the operation, but which won’t require any modification of any of the other robots’ behavior, it will add that grasp to the plan. Otherwise, it postpones its decision.

Once it’s handled all the easy grasp decisions, it revisits the ones it’s postponed. Now, it broadens its scope slightly, revising the behavior of one or two other robots at one or two points in the operation, if necessary, to effect a smooth transition between stages. But again, if even that expanded scope proves too limited, it defers its decision.

If the algorithm were permitted to run to completion, its last few grasp decisions might require the modification of every robot’s behavior at every step of the assembly process, which can be a hugely complex task. It will often be more efficient to just let the robots drop what they’re holding a few times rather than to compute the optimal solution.

In addition to their experiments with real robots, the researchers also ran a host of simulations involving more complex assembly operations. In some, they found that their algorithm could, in minutes, produce a workable plan that involved just a few drops, where the optimal solution took hours to compute. In others, the optimal solution was intractable — it would have taken millennia to compute. But their algorithm could still produce a workable plan.

“With an elegant heuristic approach to a complex planning problem, Rus’s group has shown an important step forward in multirobot cooperation by demonstrating how three mobile arms can figure out how to assemble a chair,” says Bradley Nelson, the Professor of Robotics and Intelligent Systems at Swiss Federal Institute of Technology in Zurich. “My biggest concern about their work is that it will ruin one of the things I like most about Ikea furniture: assembling it myself at home.”

Filed Under: Artificial intelligence

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

New Enterprise Solutions for 112 Gbps PAM4 Applications in Development from I-PEX

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • How to reduce the ring and spike on VDS of MOSFET
  • Variable Frequency and Amplitude Oscillator Circuit
  • Simulation and PCB are not even similar
  • Op-amp simulation
  • Where is the location of the Buck Snubber Circuit?

RSS Current Electro-Tech-Online.com Discussions

  • How to power up two stereo audio amplifiers from a single source of power supply
  • Nokia 5110 HW in Oshonsoft
  • Drill speed controller fault
  • alternate of 80386/486 microprocessor
  • looking for resistor for my treadmill.

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy