• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Better Traffic Signals Can Cut Greenhouse Gas Emissions

March 31, 2015 By David L. Chandler | MIT News Office

Analysis shows that smarter programming of stoplights could improve efficiency of urban traffic.

Image: Jose-Luis Olivares/MITSitting in traffic during rush hour is not just frustrating for drivers; it also adds unnecessary greenhouse gas emissions to the atmosphere.

Now a study by researchers at MIT could lead to better ways of programming a city’s stoplights to reduce delays, improve efficiency, and reduce emissions.

The new findings are reported in a pair of papers by assistant professor of civil and environmental engineering Carolina Osorio and alumna Kanchana Nanduri SM ’13, published in the journals Transportation Science and Transportation Research: Part B. In these papers, the researchers describe a method of combining vehicle-level data with less precise — but more comprehensive — city-level data on traffic patterns to produce better information than current systems provide.

“What we do,” Osorio says, “is develop algorithms that allow major transportation agencies to use high-resolution models of traffic to solve optimization problems.” Typically, such timing determinations are set to optimize travel times along selected major arteries, but are not sophisticated enough to take into account the complex interactions among all streets in a city. In addition, current models do not assess the mix of vehicles on the road at a given time — so they can’t predict how changes in traffic flow may affect overall fuel use and emissions.

For their test case, Osorio and Nanduri used simulations of traffic in the Swiss city of Lausanne, simulating the behavior of thousands of vehicles per day, each with specific characteristics and activities. The model even accounts for how driving behavior may change from day to day: For example, changes in signal patterns that make a given route slower may cause people to choose alternative routes on subsequent days.

While existing programs can simulate both city-scale and driver-scale traffic behavior, integrating the two has been a problem. The MIT team found ways of reducing the amount of detail sufficiently to make the computations practical, while still retaining enough specifics to make useful predictions and recommendations.

“With such complicated models, we had been lacking algorithms to show how to use the models to decide how to change patterns of traffic lights,” Osorio says. “We came up with a solution that would lead to improved travel times across the entire city.” In the case of Lausanne, this entailed modeling 17 key intersections and 12,000 vehicles.

In addition to optimizing travel times, the new model incorporates specific information about fuel consumption and emissions for vehicles from motorcycles to buses, reflecting the actual mix seen in the city’s traffic. “The data needs to be very detailed, not just about the vehicle fleet in general, but the fleet at a given time,” Osorio says. “Based on that detailed information, we can come up with traffic plans that produce greater efficiency at the city scale in a way that’s practical for city agencies to use.”

In short, Osorio says, “We take complex data and couple that with less-detailed data [to create] computer-friendly solutions that combine the two kinds of data to come up with practical solutions.”

Osorio adds, “Agencies are now being asked, whenever they propose changes, to estimate what impact that will have environmentally.” Currently, such evaluations need to be made after the fact, through actual measurements, but with these new software tools, she says, “We can put the environmental factors in the loop in designing the plan.”

The team now is working on a project in Manhattan, among other locales, to test the potential of the system for large-scale signal control.

In addition to timing traffic lights, in the future such simulations could also be used to optimize other planning decisions, such as picking the best locations for car- or bike-sharing centers, Osorio says.

Kai Nagel, a professor at the Technical University of Berlin who was not involved in this research, says this work “ties together the realism of detailed traffic microsimulators with the rigor of mathematical approximation models. The approach is both very sound and very recent. It is, even in the academic realm, a true innovation.”

Nagel adds that this research “addresses one of the most important problems faced by cities of today and the future,” and says these new findings open up “a wealth of future research opportunities.”

For more information visit www.mit.edu.

You Might Also Like

Filed Under: Automotive/Transportation

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • How can I get the frequency please help!
  • Fuel Gauge IC for Primary Cell Monitoring
  • differential amplifier with bjt
  • What is the purpose of the diode from gate to GND in normal Colpitts oscillator Circuits?
  • ADS optimization error

RSS Current Electro-Tech-Online.com Discussions

  • 100uF bypass Caps?
  • Fuel Auto Shutoff
  • Actin group needed for effective PCB software tutorials
  • how to work on pcbs that are thick
  • compatible eth ports for laptop
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy