• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Bioengineers’ Sweat Sensor Monitors Glucose

October 13, 2016 By University of Texas at Dallas

Researchers at The University of Texas at Dallas are sweating the small stuff in their efforts to develop a wearable device that can monitor an individual’s glucose level via perspiration on the skin.

In a study recently published online in the journal Sensors and Actuators B: Chemical, Dr. Shalini Prasad, professor of bioengineering in the Erik Jonsson School of Engineering and Computer Science, and her co-authors demonstrated the capabilities of a biosensor they designed to reliably detect and quantify glucose in human sweat.

The team has previously demonstrated that their technology can detect cortisol in perspiration.

But for diabetics and those at risk for diabetes, self-monitoring of blood glucose, or blood sugar, is an important part of managing their conditions.

“Fitness trackers that monitor heart rate and step count are very popular, but wearable, non-invasive biosensors would be extremely beneficial for managing diseases,” said Prasad, the Cecil H. and Ida Green Professor in Systems Biology Science.

Typical home-use blood glucose monitors require a user to obtain a small blood sample, usually through the prick of a finger and often several times a day. However, the UT Dallas textile-based sensor detects glucose in the small amount of ambient sweat on a person’s skin.

“In our sensor mechanism, we use the same chemistry and enzymatic reaction that are incorporated into blood glucose testing strips,” Prasad said. “But in our design, we had to account for the low volume of ambient sweat that would be present in areas such as under a watch or wrist device, or under a patch that lies next to the skin.”

Prasad said that researchers who work with sweat often use a process called iontophoresis, which sends an electric current through the skin to generate enough perspiration for sensing experiments. However, because this method can lead to rashes and burns on the skin, the team sought an alternative that would work with small amounts of sweat.

Their design works with volumes of sweat less than a microliter, which is the approximate amount of liquid that would fit in a cube the size of a salt crystal.

The technology also provides a real-time response in the form of a digital readout.

Prasad and bioengineering doctoral student Rujuta Munje, lead author of the journal article, incorporated an off-the-shelf polymer-based textile material in their glucose sensor and used UT Dallas clean-room facilities to construct the electronic elements. The prototype is a small, flexible, rod-shaped device about an inch long.

“We used known properties of textiles and weaves in our design,” Prasad said. “What was innovative was the way we incorporated and positioned the electrodes onto this textile in such a way that allows a very small volume of sweat to spread effectively through the surface.”

Typical blood glucose testing strips also contain a molecule that ultimately amplifies the signal from the chemical reactions on the strip enough to register electronically on a monitoring device. But if used in a device that is worn next to the skin, those molecules can be irritating, Prasad said, which presented another challenge.

To ensure that such a tiny amount of sweat would generate a strong enough signal, Prasad and Munje modified the surface topography of the textile material.

“Our modifications allow this material to entrap glucose oxidase molecules, which effectively amplifies the signal,” Prasad said. “We did it this way because we are thinking about possible commercialization — to make these, we need a fabrication process that is not complex.”

Prasad and Munje also were able to account for the fact that the chemistry of a person’s sweat changes throughout the day.

“Glucose is a tricky molecule to monitor because other factors can confound a signal,” Prasad said. “For example, the pH, or acidity, of your sweat can vary greatly depending on the circumstances.”

She noted that when individuals exercise or are under stress, the level of other compounds in their sweat, such as cortisol and lactic acid, change as well, and these can interfere with glucose detection.

“We have shown that with our technology, we address three critical issues: low volume of ambient sweat, interference from other compounds and pH swings,” Prasad said

Prasad and Munje tested their prototype using samples of human sweat from donors.

While a consumer product based on the technology is still a few years away, the concept was developed with commercialization and scaled-up production in mind.

“At this point, we are thinking of this sensor as something you use for a day and toss out, and we believe it could easily be incorporated into existing consumer electronics platforms,” Prasad said. “We’re very excited about the potential for licensing this technology.”

The research was supported by the Cecil H. and Ida Green endowed fellowship at UT Dallas.

Researchers at UT Dallas and elsewhere have investigated whether glucose found in other bodily fluids — such as urine and tears — might be used to track glucose levels, further eliminating the need for invasive blood draws. Google, for example, is investigating a smart contact lens designed to measure glucose levels in tears.

The Centers for Disease Control and Prevention estimate that 29 million people in the United States have diabetes and 86 million have prediabetes.

You Might Also Like

Filed Under: Uncategorized

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Five challenges for developing next-generation ADAS and autonomous vehicles

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • How to start a startup in VLSI
  • UART Basic Before Writing Code
  • Single ended measuring ports and balanced antenna
  • Thermal modelling of repetitive power pulse
  • PFAS-Free Die Attach Paste

RSS Current Electro-Tech-Online.com Discussions

  • Fun with AI and swordfish basic
  • Simple LED Analog Clock Idea
  • Microinverters and storeage batteries?
  • PIC KIT 3 not able to program dsPIC
  • Is AI making embedded software developers more productive?
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy