• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

BNAs Improve Performance Of Li-Ion Batteries

July 5, 2018 By World Scientific

Recent research published in a paper in NANO by a group of researchers from Northeastern University investigate the effect of hierarchical Bi2MoO6nanosheet arrays growing on three-dimensional Ni foam synthesized by one-step template-free route. The obtained BNAs used directly as binder-free integrated electrode for Li-ion batteries (LIBs) exhibits a super high reversible discharge capacity of 2311.7 μAh/cm2, and an excellent cycle stability.

With the rapid development of modern technology, a variety of portable electronic products have become the requirement of time. Li-ion batteries (LIBs) are the optimum selection by virtue of long cycle-life and high energy density properties. Meanwhile, LIBs are viewed as one of the most promising technology in various fields including the defense industry, space technology, electric vehicles and other fields. Nowadays, commercial LIBs mainly use graphite as the anode material. However, graphite can hardly provide the high capacity and high energy density necessary to satisfy the demand required for high power application of the next-generation LIBs due to its low theoretical specific capacity.

Thus, development of high-performance anode materials with high capacity as well as low insertion voltage is urgently needed. In terms of their high capacity, lots of metal oxides have attracted great interest in recent years. However, most metal oxides have low conductivity, high desertion voltage and structural instability, which result in poor rate capability, low power density and poor cycling stability. These shortcomings limit the application of metal oxides as anode materials for LIBs.

Among the numerous metal oxides, Bi2MoO6 with high theoretical capacity (791 mAh/g) and low desertion voltage (<1.0 V) has been widely studied for its excellent photoelectric properties, but, there are few reports on the nanostructure Bi2MoO6 as anode material for LIBs, not to mention the Bi2MoO6 integrated electrode.

Thereafter, developing an effective strategy to prepare the Bi2MoO6 integrated electrode and then exploring their electrochemical performance toward lithium is of great importance. To tackle the issue of low intrinsic conductivity, inferior cycling stability for Bi2MoO6 as anode material, the researchers proclaim an effective strategy to the synthesis of hierarchical Bi2MoO6nanosheet arrays (BNAs) on the three-dimensional (3D) Ni foam by one-step template-free hydrothermal method. Remarkably, BNAs-integrated electrodes exhibit excellent electrochemical properties (a super high reversible discharge capacity of 2311.7 μAh/cm2, more than 500 times of cyclic stability), when used as the anode electrode for LIBs.

Undoubtedly, this work disclosed a new comprehension for improving the performance of LIBs with metal oxides as the anode material. It can improve the cycle stability and capacity of lithium-ion battery and is expected to be used in portable electronic devices in the future.

Fig. (a) are the galvanostatic charge-discharge curves of BNAs integrated electrode at a current density of 25 ?A cm-2 . The 1st, 2nd discharge capacities of BNAs integrated electrode are 2471.5, 2311.7 ?Ah·cm-2 (1861.8, 1741.4 mAh g-1). Fig. (b) reveals the rate capability of BNAs integrated electrode at current densities of 250, 500, 1000, 2000, 5000 ?Ah·cm-2 respectively. The discharge capacities are 1219, 1128, 972, 678, 430 ?Ah·cm-2 (918.2, 849.7, 732.2, 510.7, 323.9 mAh g-1), respectively. Fig. (c) shows the cycling stability of BNAs integrated electrodes. Reversible capacity of BNAs integrated electrodes can maintain a capacity of 410 ?Ah·cm-2 (308.8 mAh g-1, at a current density of 320 ?Ah·cm-2) after 600 cycles. When the current density was 75 ?Ah·cm-2, the electrode exhibits a high capacity of 600 ?Ah·cm-2 (451.9 mAh g-1) after 500 cycles. The above results show that the integration of active material and current collector can greatly improve the capacity, rate ability and cyclical stability of the.

You Might Also Like

Filed Under: Power Electronic Tips

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

zonal architecture

Addressing zonal architecture challenges in the automotive industry

zonal architecture

Addressing zonal architecture challenges in the automotive industry

A2L refrigerants drive thermal drift concerns in HVAC systems

Why outdoor charging demands specialized battery connectors

How Li-ion batteries are powering the shift in off-highway equipment

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Designing for Serviceability: The Role of Interconnects in HVAC Maintenance

From Control Boards to Comfort: How Signal Integrity Drives HVAC Innovation

Built to Withstand: Sealing and Thermal Protection in HVAC Sub-Systems

Revolutionizing Manufacturing with Smart Factories

Smarter HVAC Starts at the Sub-System Level

Empowering aerospace E/E design and innovation through Siemens Xcelerator and Capital in the Cloud

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Dynacord enter protect
  • Need suggestions in task NI6363 retrigger (analog trigger)
  • Monte-Carlo simulation error on ADE-XL
  • Special FETs for LLC
  • Broad band impedance matching network for loop antenna using transformer for wireless power transfer

RSS Current Electro-Tech-Online.com Discussions

  • Sump pit water alarm - Kicad 9
  • Fun with AI and swordfish basic
  • turbo jet fan - feedback appreciated.
  • SiC FET disadvantages
  • Current sources in parallel...
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy