• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Building 3D Materials of the Future

October 16, 2014 By Institute for Integrated Cell-Material Sciences, Kyoto University

Researchers in Japan have developed a novel yet simple technique, called “diffusion driven layer-by-layer assembly,” to construct graphene into porous three-dimensional (3D) structures for applications in devices such as batteries and supercapacitors.

Their study was recently published in the journal Nature Communications.

These are electron microscopy images of the porous graphene-based structure created by diffusion driven layer-by-layer assembly. Image credit: Kyoto University's iCeMS

Graphene is essentially an ultra-thin sheet of carbon and possesses exciting properties such as high mechanical stability and remarkable electrical conductivity. It has been touted as the next generation material that can conceivably revolutionize existing technology and energy sectors as we know them.

However, the thin structure of graphene also acts as a major obstacle for practical uses. When piecing together these tiny sheets into larger structures, the sheets easily stack with one another, resulting in a significant loss of unique material properties.

While several strategies have been proposed to deal with this sticky issue, they are often costly, time consuming, and difficult to scale up.

To overcome this challenge, the researchers from the Institute for Integrated Cell-Material Sciences (iCeMS) at Kyoto University borrowed a principle from polymer chemistry and developed it into a technique to assemble graphene into porous 3D architectures while preventing stacking between the sheets.

By putting graphene oxide (an oxidized form of graphene) into contact with an oppositely charged polymer, the two components could form a stable composite layer, a process also known as “interfacial complexation.”

“Interestingly, the polymer could continuously diffuse through the interface and induce additional reactions, which allowed the graphene-based composite to develop into thick multi-layered structures. Hence, we named this process ‘diffusion driven layer-by-layer assembly’,” explained Jianli Zou, a co-investigator in the project.

The resulting products display a foam-like porous structure, ideal for maximizing the benefits of graphene, with the porosity tunable from ultra-light to highly dense through simple changes in experimental conditions.

Furthermore, the process is easily scalable for creating large-area films which will be highly useful as electrodes and membranes for energy generation or storage.

“While we have only demonstrated the construction of graphene-based structures in this study, we strongly believe that the new technique will be able to serve as a general method for the assembly of a much wider range of nanomaterials,” concluded Franklin Kim, the principal investigator of the study.

You Might Also Like

Filed Under: Artificial intelligence

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

Beyond the drivetrain: sensor innovation in automotive

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Audio Switching
  • BOM sent to Contract assemblers doesnt correspond to schem
  • 12VAC to 12VDC 5A on 250ft 12AWG
  • Amperage changes in DC-DC conversion
  • AC amplifier, transistor with bias network

RSS Current Electro-Tech-Online.com Discussions

  • stud mount Schottky diodes
  • LED circuit for 1/6 scale diorama
  • using a RTC in SF basic
  • Hi Guys
  • Can I use this charger in every country?
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy