• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Creating massive MIMO, part 2

October 3, 2022 By Steve Taranovich

In part 1, we discussed “Creating 5G Massive MIMO.” In part 2, we discuss the antenna options for moving into 6G using variations of Massive MIMO.

Recent studies on 5G and 6G show how wireless carriers use massive MIMO (mMIMO) in 5G’s 28 GHz mmWave bands. LTE-Advanced introduced advanced beamforming methods and mMIMO technology in base stations. That resulted in a higher and much more stable data rate in 5G’s mmWave transmission. Going farther, 6G will have very high data rates that surpass 100 Gb/sec with the creation of sub-terahertz waves of 100 GHz to 300 GHz. Beamforming technologies, which use mMIMO, can compensate for larger path loss in the higher frequency bands.

Figure 1. mMIMO systems typically may have tens, hundreds, or even thousands of antennas in a single antenna array. Image source: Mathworks.

mMIMO is a wireless communications technology that uses base stations equipped with very large numbers of antenna elements. These antennas improve spectral and energy efficiency. Figure 1 shows that migration from MIMO to mMIMO.

Modular massive MIMO
Modular massive MIMO (mmMIMO) technology for 6G consists of one or more predefined basic antenna modules. Think Lego building blocks. This flexibility lets engineers connect antenna modules together to form a single system. Figure 2 shows an example.

Many experts say that mmMIMO — a distributed MIMO technology — could improve spectral efficiency in low-frequency (below 1 GHz) bands that could become part of 6G. These bands serve many users because of their wide coverage areas.

Figure 2. mMIMO systems typically may have tens, hundreds, or even thousands of antennas in a single antenna array. Image source: IEEE.

mmMIMO has a quite large active antenna array that has smaller standardized antenna modules that can be deployed in large, medium, or small groups. This flexibility will enable massive MIMO in the low-frequency bands under 1 GHz.

NTT DOCOMO has demonstrated that a combination of the distributed MIMO and the base-station cooperative transmission can stably achieve the high user throughput of more than 4 bps/Hz (400 Mb/sec) even in a high-mobility environment. Over 4 bps/Hz user throughput was shown to be stably achieved by 28 GHz band base-station cooperation with mMIMO for 5GE even at two mobile stations (MSs) at the high velocity of 90 km/h.

massive Ultra-Reliable Low-Latency Communication (mURLLC)
6G wireless networks need to provide mURLLC services for massive subscribers. mMIMO techniques using massive antennas will greatly improve channel performance, thus achieving the goal of mURLLC networks.

Another 6G candidate technique, using an unmanned aerial vehicle (UAV), has been proposed to potentially support the mURLLC wireless networks. UAV significantly expands the signal’s line-of-sight (LOS) propagation with its flexibility to improve the wireless connection’s coverage.

Think of a cooperative UAV swarm as a dynamic antenna array that can maximize the wireless channel capacity by optimizing the position of each UAV. Unlike the fixed- and size-limited antenna array, the UAV swarm will achieve large apertures and will not be bounded by any geometry. Integrating the UAV with massive MIMO techniques will maximize the channel capacity only with the cost of moving the UAV from their initial positions and will guarantee the low-latency transmission for mURLLC traffic in supporting 6G wireless networks.

Other technologies such as beamforming and spatial multiplexing join massive MIMO as key technologies for 5G New Radio (NR) systems.

Steve TaranovichSteve Taranovich is the author of Guardians of the Right Stuff. He’s an experienced technical writer and former editor-in-chief with a demonstrated history of working in the writing and editing industry. His skills include in analog electronics, space-related electronics, audio, RF communications, and power management. Steve holds BSEE and MSEE degrees from NYU Polytechnic School of Engineering (now NYU Tandon School of Engineering).

You Might Also Like

Filed Under: 5G, FAQ, Featured

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • 12VAC to 12VDC 5A on 250ft 12AWG
  • SPI speed pic18f66j15
  • Antiparallel Schottky Diodes VDI-Load Pull
  • Elektronik devre
  • Power handling in RF waveguide components

RSS Current Electro-Tech-Online.com Discussions

  • how to work on pcbs that are thick
  • compatible eth ports for laptop
  • Actin group needed for effective PCB software tutorials
  • Kawai KDP 80 Electronic Piano Dead
  • Doing consultancy work and the Tax situation?
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy