• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
      • Power Electronics & Programmable Power
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Dartmouth researchers help secure the power grid

January 26, 2010 By EurekAlert

Hanover, NH ? Dartmouth Computer Science Professor Sean Smith with his students and research staff are part of the national Trustworthy Cyber Infrastructure for the Power Grid (TCIPG) team that has been awarded a five-year $18.8 million grant from the U.S. Department of Energy with contributions from the U.S. Department of Homeland Security. This represents continued funding that started in 2005 with support from the National Science Foundation.

TCIPG will explore the “Smarter Grid,” secure and reliable technology involved in the underpinnings of the nation’s electrical power infrastructure. As power grids are upgraded and connected to online systems to increase efficiency, they become vulnerable to malicious attacks and hackers. The TCIPG team will develop cyber security tools and technologies to ensure that power supplies are not disrupted.

“Power is the critical infrastructure that underlies all other critical infrastructure; if there’s no electricity, we can’t power the Internet, or telephones, or medical equipment,” says Sean Smith, an associate professor of computer science. He is also affiliated with Dartmouth’s Institute for Security, Technology, and Society. “It’s great to make a contribution to the effort to secure the power grid. And, because we involve undergraduate and graduate students, and high school students, too, the work furthers our educational mission. The students all get real-world experience and make real-world contributions.”

TCIPG also includes researchers with the Information Trust Institute at the University of Illinois at Urbana-Champaign, the University of California at Davis, and Washington State University, with central coordination of the project at Illinois. The director of the project is William Sanders, a professor in the Electrical and Computer Engineering Department at the University of Illinois at Urbana-Champaign. Many of the researchers in this project, including Smith, are also associated with the Institute for Information Infrastructure Protection, a 27-member consortium of national cyber security institutions, headquartered at Dartmouth. The institute coordinates a national cyber security R&D program and help build bridges between academia, industry and government.

TCIPG team members have been collaborating on work in this area since 2005, with support from the National Science Foundation. They have developed both hardware and software that addresses critical needs in securing the cyber infrastructure of the power grid. Most notably, the researchers developed and implemented a process for protecting message exchanges and a strategy for managing complex security policies in large networks that potentially have thousands of rules about who can access what. TCIPG researchers have also addressed security weaknesses of individual computational devices in substations and homes, which are ripe for financial fraud and cyber-terrorism.

New research aims to integrate information technologies with real-time authentication, integrity, and confidentiality, and hardware and software that resists and tolerate attempts at intrusion without compromising performance. Researchers hope to implement systems that allow for wide-area monitoring and control, respond to and better control demands for energy load, and better provide for the plug-in needs of hybrid electric vehicles.

“Securing the current grid ? already a huge distributed system with complex performance, operational, and deployment constraints ? is an important problem, and it will only get more urgent as computing permeates more places in it,” says Smith.

SOURCE

Filed Under: Components

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

New Enterprise Solutions for 112 Gbps PAM4 Applications in Development from I-PEX

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • How to reduce the ring and spike on VDS of MOSFET
  • Variable Frequency and Amplitude Oscillator Circuit
  • Simulation and PCB are not even similar
  • Op-amp simulation
  • Where is the location of the Buck Snubber Circuit?

RSS Current Electro-Tech-Online.com Discussions

  • How to power up two stereo audio amplifiers from a single source of power supply
  • Nokia 5110 HW in Oshonsoft
  • Drill speed controller fault
  • alternate of 80386/486 microprocessor
  • looking for resistor for my treadmill.

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy