• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
      • Power Electronics & Programmable Power
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Discovery Could Lead to Jet Engines That Run Hotter—And Cleaner

January 18, 2017 By Pam Frost Gorder

Researchers here have made a discovery in materials science that sounds like something from the old Saturday morning cartoon Super Friends: They’ve found a way to deactivate “nano twins” to improve the high-temperature properties of superalloys that are used in jet engines.

The advance could speed the development of powerful and environmentally friendly turbine engines of all sorts, including those used for transportation and power generation.

The “nano twins” in question are microscopic defects that grow inside alloys and weaken them, allowing them to deform under heat and pressure. In the journal Nature Communications, engineers at The Ohio State University describe how tailoring an alloy’s composition and then exposing it to high heat and pressure can not only prevent nano twins from forming, it can actually make the alloy stronger.

In tests, the technique, which they’ve dubbed “phase transformation strengthening,” eliminated the formation of nano twins and decreased alloy deformation by half.

Strong, heat-resistant alloys enable turbine engines to run cleanly and efficiently, explained Michael Mills, professor of materials science and engineering and leader of the project at Ohio State. When an engine can run at very high temperatures, it consumes its fuel more thoroughly and produces lower emissions.

“We found that increasing the concentrations of certain elements in super-alloys inhibits the formation of high-temperature deformation twins, thereby significantly improving the alloys’ high temperature capabilities,” Mills said.

These days, the most advanced alloys are designed on computer—practically atom by atom—and Mills’ team set out to address what he called a deficit in the “quantitative, comprehensive understanding” of how these exotic metal-based materials deform under high stress.

The researchers made the discovery when they were studying nano twin formation in two different commercial superalloys. They compressed samples of the alloys with thousands of pounds of pressure at around 1,400 degrees Fahrenheit—a temperature comparable to a running jet engine—and afterward examined the alloys’ crystal structures with electron microscopes and modeled the quantum mechanical behavior of the atoms on a computer.

In both alloys, the temperature and pressure caused nano twin faults to develop within the superalloy crystals. And, in both alloys, the material composition in and around the faults changed, but in different ways.

Through a sequence of atomic-scale jumps, some elments—such as atoms of nickel and aluminum—diffused away from the faults, while others diffused into the faults. The researchers were able to detect these fine-scale movements using the advanced electron microscopes at the Ohio State’s Center for Electron Microscopy and Analysis (CEMAS), which offers one of the largest concentrations of electron and ion beam analytical microscopy instruments in any North American institution.

“In the first alloy, which was not as strong at high temperature, atoms of cobalt and chromium filled the fault,” said Timothy Smith, former student at Ohio State and lead author of the study. “That weakened the area around the fault and allowed it to thicken and become a nano twin.”

But in the second alloy—the one that didn’t form nano twins—the elements titanium, tantalum and niobium tended to diffuse into the faults instead. As a result, a new and very stable phase of material formed right at the faults. The new phase was so stable that it resisted the formation of nano twins.

The tendency for particular atoms to diffuse into the nano twin faults depends on the overall composition of the alloy, the researchers found. “We discovered that when the amount of titanium, tantalum, and niobium in the alloy was increased, while decreasing cobalt and chromium, we could actually strengthen the region around the faults and prevent the fault from widening into a nano twin,” Smith said.

The researchers’ innovative combination of atomic-level imaging and high-end computing is a unique feature of research done at CEMAS, said David McComb, study co-author and director of CEMAS.

“Research such as this perfectly illustrates the power of CEMAS to help drive discovery in new materials and processes,” he added.

The team is continuing to study phase transformation strengthening, to see if tailoring the alloy compositions in different ways might enhance the effect.

Smith earned his doctoral degree performing this work, and is now a research materials engineer at NASA Glenn Research Center. The paper’s co-authors included Robert Williams, assistant director of CEMAS; Wolfgang Windl, professor of materials science and engineering; Hamish Fraser, Ohio Eminent Scholar and professor of materials science and engineering; and doctoral students Bryan Esser and Nikolas Antolin, all of Ohio State; Anna Carlsson of FEI/Thermo Fisher Scientific; and Andrew Wessman of GE.

Filed Under: Power Electronic Tips

Primary Sidebar

EE Training Center Classrooms.

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • RF Testing Basics
  • Power Supply Fundamentals
  • Women in Engineering
  • R&D 100 Podcast
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

New Enterprise Solutions for 112 Gbps PAM4 Applications in Development from I-PEX

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • How to set USB port as RS-485 entrance? How to interpret Growatt solar inverter commands?
  • Find Critical Path in Cadence Genus?
  • Simulation of a Press-ON-Press-OFF push button
  • HFSS 2022 R2 - Waveguide port configuration
  • Why this antenna azimuth and elevation direction are the same?

RSS Current Electro-Tech-Online.com Discussions

  • How know if solder iron has good quality tip?
  • How does a transistor works as a switch?
  • Peltier control
  • How to set USB port as RS-485 entrance? How to interpret Growatt solar inverter commands?
  • Component Identification

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy