• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Engineers propose new waveforms for 6G

June 16, 2022 By Martin Rowe

At the May 2022 6G Symposium, three speakers proposed modulation and coding methods for 6G. As you might expect, they keep getting more complex to handle the expected higher data rates.

FM, QPSK, QAM, CDMA, TDMA, GSM, OFDM. These are some of the modulation and coding schemes used in cellular technologies over the years. Each generation — except 5G, which uses ODFM as does LTE — has brought another modulation technique because of the need for higher data rates. 6G will likely require yet new techniques for modulation and coding. As for which techniques, we still don’t know.

At the May 2022 6G Symposium, three engineers gave presentations on possible technologies for 6G radios. One thing seems certain: machine learning (ML) will play a more significant role in 6G than it does in 5G.

pulsone

Figure 1. A Pulsone is a combination of a pulse and tone, related through the Zak Transform. Source: Cohere Technologies

Ronny Hadani of Cohere Technologies proposed orthogonal time-frequency space (OTFS), which he described as a combination of Radar and communications signals. OTFS creates a delay-Doppler radar image of a transmitter’s surroundings, by which software can predict what’s coming next as a transmitter moves. Combined with machine learning, the delay-Doppler technique can, according to Cohere, be used to predict how a transmitted signal will behave in the face of reflections and other impediments. As Hadani’s paper describes, “all received QAM symbols experience the same localized impairment, and all the delay-Doppler diversity branches are coherently combined.”

OTFS waveform

An OTFS waveform doesn’t vary from delay-Doppler effects. Source: Cohere Technologies.

The OTFS signal is “the fusion of a tone and a pulse” related through the Zak Transform (Figure 1). Hadani used the term “Pulseone” (pronounced pulSONE) to describe the OTFS waveform carrier. A Pulsone (Figure 2) holds its shape when shifted in time or in frequency (Doppler shift). “When you apply a FFT to a Pulsone, you get a Pulsone.” Thus, a Pulsone is invariant to distortion and delay from Doppler shift.

Hadani’s paper (linked above) explains OFTS in detail. You can also watch Hadani give a detailed lecture here.

SCMS

Figure 3. An SCMA waveform uses two or three constellations, That provides redundancy but adds complexity. Source: University of Surrey

Prof. Pei Xiao of the University of Surrey, a leading wireless research university, proposed a completely different concept that he called Sparse Code Multiple Access (SCMA). Xiao’s concept is based on using multiple subcarriers per user, where a user’s data is interleaved on two or three subcarriers. The result is two or three constellations (Figure 3). The difference is, said Xiao, 1.5 dB compared to OFDMA, which lacks the ability to use more than one constellation.

The problem with those constellations, according to Xiao, is that the signal processing is too complex to be practical. You end up with 3D modulation. Xiao proposed several techniques for simplifying the signal-processing algorithms.

Figure 4. Frequency hopping is one of several techniques for reducing SCMA signal complexity. Source: University of Surrey

One such technique, called an Expectation Propagation, a Bayesian inference algorithm, that reduces overall complexity because the complexity increases linearly with additional constellations as opposed to increasing exponentially.

Xiao also pointed to frequency hopping as another way to reduce complexity (Figure 4).

Adding frequency hopping between the SCMA encoding and OFDM modulation. Frequency hopping reduces the chances that some codes will be lost due to fading because data is spread across several frequencies.

Figure 5. This roadmap to a 6G waveform heavily depends of machine learning. Source: Nokia Bell Labs

Thus, if one frequency shows fading, another might reach the receiver, ensuring successful decoding.

Dani Korpi of Nokia Bell Labs discussed neither a specific modulation nor coding. Instead, he suggested that machine learning could be used to “learn” a waveform based on the full air interface, fram transmitter to receiver. Korpi discussed the roadmap in Figure 5 where ML replaces not only processing blocks, but the transmitter physical layer and constellation.

Figure 6. ML could be used to learn the waveforms for both the transmitter and receiver. Source: Nokia Bell Labs

“Let neural networks learn the design” doesn’t mean that ML can generate a complete design, for it would need a basic design to learn and then improve upon. From that information, Figure 6 shows how ML could then optimize the receiver as well.

The video below covers the entire session on 6G waveforms.

 

Filed Under: 5G Tagged With: Cohere Technologies

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

New Enterprise Solutions for 112 Gbps PAM4 Applications in Development from I-PEX

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Constraining a combo path (Synopsys DC)
  • tetramax fault list
  • Tessent MBIST for memories with dedicated test clock
  • SDR with external LO input
  • Question about set_timing_derate

RSS Current Electro-Tech-Online.com Discussions

  • Question about ultrasonic mist maker
  • RF modules which can handle high number of bytes per second
  • Disabled son needs advice please
  • DIY bluetooth speaker
  • Pet Microchip scan

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy