IK4-Ikerlan and the UPV/EHU-University of the Basque Country are exploring the limits of organic solar cells and how to manufacture more efficient cells
Conventional photovoltaic technology uses large, heavy, opaque, dark silicon panels, but this could soon change.
The IK4-Ikerlan research centre is working within the X10D European project with new materials to produce solar panels in order to come up with alternatives to the current panels.
What is needed to improve the functioning of cells with a large surface are materials that cost less to produce and offer greater energy efficiency.
The solar panels we see tend to be rigid and black. Organic photovoltaic technology, by contrast, enables more translucent and more flexible solar panels in a range of colours to be manufactured.
But this technology needs to meet certain requirements if it is to be accepted on the market: greater efficiency, longer duration and low production cost.So this research has set out “to analyse the capacity new materials have to absorb solar energy as well as to seek appropriate strategies to move from the lab to actual operations,” pointed out Ikerne Etxebarria, a researcher of the UPV/EHU and IK4-Ikerlan.
The research team has analysed what the maximum size is for the cells, which must have a large surface area, if they are to work properly.
Various cells with different structures and surfaces have been designed for this purpose. Once the results had been analysed, “we found that in cells of up to approximately 6 cm2 the power was in direct proportion to their surface area.
On larger surface areas, however, the performance of the cells falls considerably,” stressed Etxebarria, who has reached the following conclusion: to be able to manufacture cells with a large surface area it is necessary to build modules, to which cells with a smaller surface will be connected in series or in parallel, on the substrate itself.
To manufacture these modules, the layers existing between the electrodes need to be structured, in other words, the cells have to be connected to each other.”Until now, that structuring has been done mechanically or by means of laser but with the risk of damaging the substrate.
However, in this research we have developed a new automatic structuring technique,” she pointed out. This technique involves transforming the features of the surface of the substrate.
Aim: To Improve Efficiency
Another of the aims of this research was to find a way of manufacturing highly efficient cells. To do this, the first step was to optimize the production process of cells based on different polymers, in order to achieve the maximum efficiency of these materials; secondly, polymers that absorb light at different wavelengths have been used to produce cells with a tandem structure in order to make them more efficient.
Ikerne Etxebarria-Zubizarreta is a Doctor of Chemical Engineering. She works at the IK4-Ikerlan research centre. She submitted her PhD thesis entitled “Mini-Modules and Tandem Organic Solar Cells: Strategies to improve device efficiency” at the UPV/EHU and written up under the supervision of Iñigo López-Arbeloa, lecturer in the UPV/EHU’s Department of Physical Chemistry, and Roberto Pacios-Castro, an IK4-Ikerlan researcher.