• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

First CubeSat Built by an Elementary School Deployed into Space

May 16, 2016 By NASA

In 2012, the students from St. Thomas More Cathedral School in Arlington, Virginia lined up in the shape of a space shuttle in the school parking lot and witnessed the flyover of the Space Shuttle Discovery as it was being retired to the Smithsonian Air and Space Museum. This awe-inspiring vision was an inspiration to the entire school and a catalyst for them to literally reach for the stars. Thus beginning their quest to build a small satellite, called a CubeSat, that would engage students around the world in Earth observations.

Over the next three years, all 400 pre-kindergarten through eight grade students participated in the design, construction and testing of their small satellite. Through this hands-on, inquiry based learning activity the students conducted real world engineering and will operate the St. Thomas More (STM)Sat-1, the first CubeSat built by elementary school students to be deployed in space.

Joe Pellegrino, a deputy project manager from NASA’s Goddard Space Flight Center serves as the team’s mission manager, he mentors the students on spacecraft assembly, integration, testing and launch. Engaging the students in the entire systems engineering process to build, launch and operate a satellite in space. The school conducted two high altitude balloon flights to test their hardware before constructing their spaceflight model. They learned how to operate an amateur radio and built the ground station they’ll use to communicate with their satellite. Students donned anti-static clothing as they learned how to solder and constructed the fragile electronic components that make up their CubeSat.

Once built, the CubeSat needed a ride to space, and the school submitted a proposal to a public announcement by NASA’s CubeSat Launch Initiative and was one of 16 organizations selected to receive a flight opportunity and were in the company of MIT, the University of Michigan and John Hopkins Applied Physics lab.

STMSat-1 was launched to the ISS on Dec. 6, 2015 aboard an Orbital ATK Cygnus cargo resupply spacecraft as part of NASA’s Educational Launch of Nanosatellites (ELaNa) IX mission. Along with CubeSats from the University of Colorado Boulder and the University of Michigan, STMSat-1 was deployed from the NanoRacks CubeSat Deployer (NRCSD) system on May 16. The NRCSDs are commanded one by one, allowing the dispenser doors to open and the large internal spring to be released, deploying the CubeSats into an orbital altitude similar to that of the ISS, which orbits about 250 miles above Earth. After 30 minutes in orbit, the internal timers on the CubeSats allowed their onboard computers to boot up and begin transmitting. The CubeSat teams utilize their ground stations to listen for their beacons to determine the small satellites’ functionality and operational status. Once operational they begin their missions.

  • The STMSat-1 mission is an educational mission to provide hands-on, inquiry-based learning activities with an on-orbit mission to photograph the Earth and transmit images to our primary ground station and to remote ground stations throughout the country.
  • The University of Michigan’s CubeSat investigating Atmospheric Density Response to Extreme driving (CADRE) mission is a space weather investigation that will improve our understanding of the dynamics of the upper layers of our atmosphere: the thermosphere and ionosphere. 
  • The University of Colorado Boulder Miniature X-Ray Solar Spectrometer (MinXSS) mission is a science investigation to study solar flares, active regions, the quiescent sun, and their impact on Earth’s upper atmosphere. MinXSS is sponsored by NASA’s Science Mission Directorate.

As part of a partnership with NASA’s Ames Research Center in Moffett Field, California, Santa Clara University, will conduct ground operations for two Node satellites that were also deployed on May 16 from the space station. Nodes will demonstrate the ability to receive and distribute commands in space from the ground, while periodically exchanging scientific data from their onboard radiation instruments, a first for small satellites. These satellites were sponsored by the Small Spacecraft Technology Program, within NASA’s Space Technology Mission Directorate, and received additional funding from Ames.

The CubeSat Launch Initiative provides access to space for CubeSats developed by the NASA centers and programs, educational institutions and nonprofit organizations, enabling CubeSat developers’ access to a low-cost pathway to conduct research in the areas of science, exploration, technology development, education or operations. ELaNa Missions, managed by the Launch Services Program at NASA’s Kennedy Space Center in Florida, provide a deployment opportunity or ride-share launch to space for the CubeSats selected through CSLI. Since its inception in 2010, the initiative has selected more than 100 CubeSats and launched 46 CubeSats. These miniature satellites were chosen from responses to public announcements on NASA’s CubeSat Launch Initiative. NASA will announce another call for proposals in mid-August 2016.

Filed Under: STEM

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

New Enterprise Solutions for 112 Gbps PAM4 Applications in Development from I-PEX

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Electrical Lenght of Microstrip Transmission Lines
  • Op amp non inverting amplifier not working
  • Making a ducted soldering fan?
  • Characterization values of a MOSFET in PDK
  • USBASP Programmer Mod

RSS Current Electro-Tech-Online.com Discussions

  • Need a ducted soldering fan for solder smoke extraction
  • How to search component to replace my burn RF inductor?
  • Question about ultrasonic mist maker
  • Someone please explain how this BMS board is supposed to work?
  • bluetooth jammer

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy