• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

From IT to Black Holes: Nano-control of Light Pioneers New Paths

April 18, 2016 By RMIT

Led by RMIT’s Professor Min Gu, the team designed an integrated nanophotonic chip that can achieve unparalleled levels of control over the angular momentum (AM) of light.

The pioneering work opens new opportunities for using AM at a chip-scale for the generation, transmission, processing and recording of information, and could also be used to help scientists better understand the evolution and nature of black holes.

While traveling approximately in a straight line, a beam of light also spins and twists around its optical axis.

The AM of light, which measures the amount of that dynamic rotation, has attracted tremendous research interest in recent decades.

A key focus is the potential of using AM to enable the mass expansion of the available capacity of optical fibres through the use of parallel light channels – an approach known as “multiplexing”.

But realising AM multiplexing on a chip scale has remained a major challenge, as there is no material in nature capable of sensing twisted light.

“By designing a series of elaborate nano-apertures and nano-grooves on the photonic chip, our team has enabled the on-chip manipulation of twisted light for the first time,” Gu said.

“The design removes the need for any other bulky interference-based optics to detect the AM signals.

“Our discovery could open up truly compact on-chip AM applications such as ultra-high definition display, ultra-high capacity optical communication and ultra-secure optical encryption.

“It could also be extended to characterize the AM properties of gravitational waves, to help us gain more information on how black holes interact with each other in the universe.”

The team devised nano-grooves to couple AM-carrying beams into different plasmonic AM fields, with the nano-apertures subsequently sorting and transmitting the different plasmonic AM signals.

Lead author Haoran Ren, a PhD candidate at Swinburne University of Technology, said: “If you send an optical data signal to a photonic chip it is critical to know where the data is going, otherwise information will be lost.

“Our specially-designed nanophotonic chip can precisely guide AM data signals so they are transmitted from different mode-sorting nano-ring slits without losing any information.”

As well as laying the foundation for the future ultra-broadband big data industry and providing a new platform for the next industry revolution, the research offers a precise new method for improving scientific knowledge of black holes.

Gu, Associate Deputy Vice-Chancellor for Research Innovation and Entrepreneurship at RMIT, and Node Director of the Australian Research Council’s Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), said the work offered the possibility of full control over twisted light, including both spin angular momentum (SAM) and orbital angular momentum (OAM).

“Due to the fact that rotating black holes can impart OAM associated with gravitational waves, an unambiguous measuring of the OAM through the sky could lead to a more profound understanding of the evolution and nature of black holes in the universe,” he said.

The research has been published online by the journal Science.

You Might Also Like

Filed Under: Uncategorized

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

Beyond the drivetrain: sensor innovation in automotive

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • GanFet power switch starts burning after 20 sec
  • Core loss in output inductor of 500W Two Transistor forward?
  • Question LCD LED IPS display
  • Colpitts oscillator
  • BiSS-C Behavior Without Slave (dsPIC33AK128MC106 + iC-MB4)

RSS Current Electro-Tech-Online.com Discussions

  • An Update On Tarrifs
  • Component tracks and pins are empty in proteus 8 (void)
  • Need Help Figuring Out the Schematics Of Circuit Board
  • Wish to buy Battery, Charger and Buck converter for 12V , 2A router
  • applying solder paste from a jar
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy