• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Gains from GaN

October 15, 2021 By Lee Teschler

Energy efficiencies made possible by gallium-nitride semiconductors are starting to impact every day products.

Paul Wiener • GaN Systems, Inc. | Ron Stull • CUI, Inc.
Wide-bandgap power semiconductors are in production now and recommended for new designs. The earliest adopters among power supply OEMs have already begun introducing new product lines employing this technology to deliver smaller size, greater efficiency, and more power than their predecessors. As ordinary silicon-based power reaches the end of its roadmap, it’s time for power supply specifiers to change gear.

Silicon-based semiconductors, from processors to power transistors, have enabled tremendous advances in the way the world lives and works. From the invention of the p-n junction in the 1930s-40s through the periods of exponential progress highlighted by observations such as Moore’s Law, the electronics industry has become the global phenomenon it is today, largely built on silicon.

power supplies
The form factor of a GaN-based adapter compared to a silicon-based adapter (dashed line) of same power level.

We know, however, that as a technology matures, the gains from each iteration diminish while it takes more effort to realize them. Then, typically, a new technology arrives and changes the game. There is a leap forward followed by a period of rapid progress.

Commercially, these technological singularities can be dangerous for market leaders. At times of disruption, new upstarts can quickly eclipse those intent on wringing the last few drops of potential from the old ways.

This sort of event is happening right now in power conversion. A new generation of power supplies and converters is arriving based not on silicon devices but instead on newer wide-bandgap power semiconductors. Among these, gallium-nitride (GaN) power transistors now enable significant advances in power density, efficiency, and thermal performance when the need is for breakdown voltages up to about 600 V.

adoption curve
The typical technology adoption cycle.

Switched-mode power supplies designed with GaN devices can operate efficiently at a switching frequency higher than is workable with ordinary silicon components. The efficiency gain is so great that the PSU can operate at the full rated power with only a small heatsink or, sometimes, no heatsink at all. Also, the higher frequency allows smaller magnetic components and capacitors to condition the power supply output. Overall, a GaN PSU can be half the size or smaller than a comparable silicon-based design.

These space savings are important for organizations that buy power supplies. For example, consider internal power supplies. These are often the last item to be considered in the design of a new product. There can be problems if commercial supplies don’t fit the space left over after the main design work has been done. Being inherently smaller, GaN-based PSUs can help alleviate such issues.

GaN-based external adapters, on the other hand, can be half the size or less of conventional units. The smaller size gives consumers the chance to declutter their environment. For example, imagine the effect in a commercial gym that has row upon row of exercise machines. CUI has recently introduced a family of GaN-based power adapters in a technical collaboration with GaN Systems. Units are available off the shelf in various popular power ratings up to 160 W and further models are planned.

OEMs choosing the new GaN adapters can instantly get a competitive advantage over similar products based on ordinary silicon. Moreover, GaN’s efficiency advantage helps ensure the environmental performance that is both mandated by legislators and demanded by markets.

GaN power semiconductors are driving improvements in numerous industries. In automotive applications, for example, size reductions in power-conversion circuitry allows what was formerly dead space within a vehicle to become usable. Suddenly, ECUs or modules can squeeze into previously impossible positions and enable extra value-added features or facilitate exterior styling that ushers in a sleek new look.

Sleekness also helps win the hearts of gamers. The thinnest laptops are prestige items, and ambitious GaN designs dramatically cut the vertical height of the computer power supply to make possible dramatic low profiles. In television design as well, thin is “in.” Power supplies using GaN transistors have helped realize ultra-low-profile designs that make the most of extremely thin display technologies such as OLEDs.

applications
Data centers, displays, laptops, and audio applications all benefit from GaN based power supplies.

Another application is in data center server blades where GaN technology has made it possible to shrink on-board power modules to about 30% of the accepted normal size. A typical conventional power module measures 185×70 mm and one blade typically requires two of them. GaN thus liberates the board space occupied by more than one entire module.

Numerous other applications can benefit from the size reduction and efficiency made possible by GaN power semiconductors. Examples include mobile chargers, ac/dc power supplies and inverters for energy storage and power conditioning, blockchain processing, powered hospital beds, drives for autonomous guided vehicles, e-mobility systems, and others.

Additionally, GaN is enabling new switching-circuit applications not feasible using conventional silicon transistors. These include aircraft wing de-icing, making use of GaN transistors’ ability to switch efficiently at extremely high frequencies; and high-quality class-D audio amplifiers that take advantage of extremely fast and clean GaN switching transitions to create close-to-perfect square waves that permit simplified filtering with reduced distortion.

GaN now enables leading electronics brands to make a leap. Product designers and specifiers can take advantage of the emerging generation of high-efficiency power supplies and adapters to trim dimensions, boost performance, and save energy as well as explore new applications.

You may also like:


  • Power bricks get an effeciency boost with GaN

  • GaN is cost-effective in motor drive applications

  • Webinar: Where’s the Fit for GaN and SiC?
  • GaN power devices
    GaN power devices, Part 2: Application
  • GaN power devices
    GaN power devices, Part 1: Principles
DesignFast Banner version: 03e1dd97

Filed Under: Applications, FAQ, Featured, Power Electronic Tips Tagged With: cui, FAQ, gansystemsinc

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 7
See More >

Current Digital Issue

April 2022 Special Edition: Internet of Things Handbook

How to turn off a smart meter the hard way Potential cyber attacks have a lot of people worried thanks to the recent conflict in Ukraine. So it might be appropriate to review what happened when cybersecurity fi rm FireEye’s Mandiant team demonstrated how to infiltrate the network of a North American utility. During this…

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • What is the function of the long stub?
  • Altium Routing: through vias being split into two blind vias. Additional question about blind via costs / benifits
  • Why is Analog Design so Hard????
  • UCC28070A controller ramp circuit implemented incorrectly?
  • DIY Oscilloscope

RSS Current Electro-Tech-Online.com Discussions

  • Background of Members Here
  • Cannot see how to open a Mini DIN connector
  • UCC28070A ramp circuit is wrong?
  • Tricky Triacs
  • software PWM

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy