• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Graphene Enables All-Electrical Control of Energy Flow from Light Emitters

January 21, 2015 By ICFO - The Institute of Photonic Sciences

At the heart of lasers, displays and other light-emitting devices lies the emission of photons. Electrically controlled modulation of this emission is of great importance in applications such as optical communication, sensors and displays.

Moreover, electrical control of the light emission pathways opens up the possibility of novel types of nano-photonics devices, based on active plasmonics.

 This is an illustration of the electrically controlled energy flow into photons and plasmons. Image credit: ICFO

Scientists from ICFO, MIT, CNRS, CNISM and Graphenea have now demonstrated active, in-situ electrical control of the energy flow from erbium ions into photons and plasmons.

The experiment was implemented by placing the erbium emitters a few tens of nanometers away from the graphene sheet, whose carrier density (Fermi energy) is electrically controlled.

Partially funded by the EC Graphene Flagship, this study entitled “Electrical control of optical emitter relaxation pathways enabled by graphene”, has been published in Nature Physics.

Erbium ions are essentially used for optical amplifiers and emit light at a wavelength of 1.5 micrometers, the so called third telecom window. This is an important window for optical telecommunications because there is very little energy loss in this range, and thus highly efficient information transmission.

The study has shown that the energy flow from erbium into photons or plasmons can be controlled simply by applying a small electrical voltage. The plasmons in graphene are rather unique, as they are very strongly confined, with a plasmon wavelength that is two orders of magnitude smaller than the wavelength of the emitted photons.

As the Fermi energy of the graphene sheet was gradually increased, the erbium emitters went from exciting electrons in the graphene sheet, to emitting photons or plasmons.

The experiments revealed the long-sought-after graphene plasmons at near-infrared frequencies, relevant for these telecommunications applications. In addition, the strong concentration of optical energy offers new possibilities for data storage and manipulation through active plasmonic networks.

Frank Koppens commented: “This work shows that electrical control of light at the nanometer scale is possible and efficient, thanks to the optoelectronics properties of graphene.”

You Might Also Like

Filed Under: Artificial intelligence

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Elektronik devre
  • Powering a USB hub: safely distributing current from a shared power supply
  • RF-DC rectifier impedance matching
  • How can I get the frequency please help!
  • 12VAC to 12VDC 5A on 250ft 12AWG

RSS Current Electro-Tech-Online.com Discussions

  • 100uF bypass Caps?
  • Fuel Auto Shutoff
  • Actin group needed for effective PCB software tutorials
  • how to work on pcbs that are thick
  • compatible eth ports for laptop
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy