• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

High-mobility transistors could bring less expensive next-generation displays

December 16, 2021 By Lee Teschler Leave a Comment

The trade-off between carrier mobility and stability in amorphous oxide semiconductor-based thin-film transistors (TFTs) is said to have been overcome by researchers from Tokyo Institute of Technology (Tokyo Tech) in an ingeniously fabricated indium tin-zinc-oxide TFT. This could pave the way for the design of display technologies that are cheaper than current silicon-based technologies.

Amorphous oxide semiconductors (AOS) are a promising option for the next generation of display technologies due to their low costs and high electron (charge carrier) mobility. The high mobility, in particular, is essential for high-speed images. But AOSs also have a distinct drawback that is hampering their commercialization — the mobility–stability tradeoff.

TFT displaysOne of the core tests of stability in TFTs is the “negative-bias temperature stress” (NBTS) stability test. Two AOS TFTs of interest are indium-gallium-zinc oxide (IGZO) and indium-tin-zinc oxide (ITZO). IGZO TFTs have high NBTS stability but poor mobility while ITZO TFTs have the opposite characteristics. The existence of this tradeoff is well-known, but thus far there has been no understanding of why it occurs.

In a recent study published in Nature Electronics, a team of scientists from Japan have now reported a solution to this tradeoff. “In our study, we focused on NBTS stability which is conventionally explained using ‘charge trapping.’ This describes the loss of accumulated charge into the underlying substrate. However, we doubted if this could explain the differences we see in IGZO and ITZO TFTs, so instead we focused on the possibility of a change in carrier density or Fermi level shift in the AOS itself,” explains Assistant Professor Junghwan Kim of Tokyo Tech, who headed the study.

To investigate the NBTS stability, the team used a “bottom-gate TFT with a bilayer active-channel structure” comprising an NBTS-stable AOS (IGZO) layer and an NBTS-unstable AOS (ITZO) layer. They then characterized the TFT and compared the results with device simulations performed using the charge-trapping and the Fermi-level shift models.

They found that the experimental data agreed with the Fermi-level shift model. “Once we had this information, the next question was, ‘What is the major factor controlling mobility in AOSs?’” says Prof. Kim.

The fabrication of AOS TFTs introduces impurities, including carbon monoxide (CO), into the TFT, especially in the ITZO case. The team found that charge transfer was occurring between the AOSs and the unintended impurities. In this case the CO impurities were donating electrons into the active layer of the TFT, which caused the Fermi-level shift and NBTS instability. “The mechanism of this CO-based electron donation is dependent on the location of the conduction band minimum, which is why you see it in high-mobility TFTs such as ITZO but not in IGZO,” elaborates Prof. Kim.

Armed with this knowledge, the researchers developed an ITZO TFT without CO impurities by treating the TFT at 400°C and found that it was NBTS stable. “Super-high vision technologies need TFTs with an electron mobility above 40 cm2 (Vs)-1. By eliminating the CO impurities, we were able to fabricate an ITZO TFT with a mobility as high as 70 cm2 (Vs)-1,” comments an excited Prof. Kim.

However, CO impurities alone do not cause instability. “Any impurity that induces a charge transfer with AOSs can cause gate-bias instability. To achieve high-mobility oxide TFTs, we need contributions from the industrial side to clarify all possible origins for impurities,” asserts Prof. Kim.

The results could pave the way for fabrication of other similar AOS TFTs for use in display technologies, as well as chip input/output devices, image sensors and power systems. Moreover, given their low cost, they might even replace more expensive silicon-based technologies.

You may also like:


  • Talk of EV fires still smolders

  • Say goodbye to cross-country road trips
  • Havana Syndrome
    Microwaves and the Havana Syndrome

  • Worst suspicions confirmed: The terrible security of internet routers

  • Battery breakthrough fatigue
DesignFast Banner version: 03ee18d1

Filed Under: Featured

Reader Interactions

Leave a Reply Cancel reply

You must be logged in to post a comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 7
See More >

Current Digital Issue

Our second 5G Handbook is now available

Featuring 15 articles, the 2022 5G Handbook looks at private networks, timing, connectivity, latency, mmWaves, test, and other topics.

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Reducing switching noise in MOSFET inverter
  • LLC HB with synchronous rectifiers can be very dodgy?
  • ADS Cascode Power Amplifier Loadpull Problem
  • building lm2596 dc dc using Arduino uno
  • HFSS simulation problem

RSS Current Electro-Tech-Online.com Discussions

  • Where is the fuse ?
  • Capacitor to eliminate speaker hum
  • Test lead management ideas ?
  • PC/laptop working and processing so much harder on low quality connection
  • undefined reference header file in proteus

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy