• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
      • Power Electronics & Programmable Power
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Hybrid sensors for connected vehicles

July 28, 2022 By Lee Teschler

The dependence of smart vehicle features on sensing technology has manufacturers thinking about how to field devices that combine functions in economical ways.

Estimates are that today’s vehicles can have between 60 and 100 sensors onboard. And over the next decade the number of sensors is expected to double. No wonder, then, there are efforts afoot to have one sensor to double or triple duty in connected vehicles of the future.

As an example of these efforts, consider the work of engineers at Tohoku Fujikura Ltd. (TFL) in Japan. They devised a combination SBR (seat belt restraint) sensor and seat heater. It is interesting to review the steps TFL went through in devising this device.

Briefly, the SBR occupant detection sensor sends a signal when two electrodes facing each other touch because of pressure applied to the seat surface. The signal goes to an electronic controller unit (ECU) that determines whether or not a passenger is in the seat and, if necessary, tells the passenger to fasten their seatbelt.

seat sensor positions
The two typical positions for a seat belt restraint sensor in a vehicle seat.

There are two types of SBR sensors. One sits on the upper seat just under the top surface leather (A-Surface). The other sits on the seat forming (B-Surface), basically, under the seat cushion. Though SBR sensors have long been required for front seats, a recent amendment to international car safety standards requires the installation of SBR sensors in all passenger seats.

To distinguish between a passenger and luggage, a conventional SBR device has an H shape so it operates only when at least one electrode on the left and right side make contact. This reduces detection errors from factors such as shopping bags on the seat. TFL engineers say the H shape also makes for reliable detection even if the seat occupants change their position or posture.

SBR sensor

A conventional SBR sensor. The switches sit at each end of the “H” shape. SBR sensors use multiple switches as a way to distinguish loads from packages and other debris from a human occupant.

The A-Surface SBR sensor is about 0.3 mm thick and resides under the surface of the seat or back rest so it is relatively close to the passenger or to objects placed on the seat. Its position gives the sensor a relatively large pressure load that is stable. However, TFL says there are issues associated with fixing the sensor precisely between the surface leather and the seat cushion foam. And passengers apparently can feel the sensor when they sit on it.

That brings us to built-in seat heaters designed to warm passengers. Conventional seat heating devices consist of one long electric heating wire about 1.0 mm in diameter arranged on the surface of a 2.0-mm-thick flexible non-woven cloth. The occupant detection sensor turns the heating operation on or off. To expand the heating area, the seat heater requires some thick buffer material between the leather seat covering and the cushion form to expand the heated area and make the heating wire unnoticeable to the passenger sitting on it. The problem is the buffer material also increases the amount of energy necessary to effectively heat the seat.

Ghost view of the TFL prototype SBR sensor/heater. TFL engineers also left space on the surface holding the SBR electrodes for other sensors such as for sensing the physique of the seat occupant. Engineers say these options will be explored in future work.

The combo seat heater/SBR sensor TFL engineers devised is soft and flexible enough to fit the base seat cushion form and puts the sensor electrodes on a printed conductive circuit. To combine the SBR sensor and the seat heater, TFL developed a printed circuit woven (PCW) sheet composed of copper circuit printed on a glass cloth (GC) substrate. (Interestingly, TFL says the PCW sheet was originally developed for wearable application.) The heated area is about 10.25×9 in. The electrode on the GC is 0.1-mm-thick screen-printing copper said to handle temperatures up to 300ºC.

assembly steps

Assembly steps involved in creating the substrates of the hybrid sensor/heater. The “basket holes” refer to vacant areas in the woven substrate due to the weft and warp of the weaving process.

There are electric circuits facing each other on both sides of the GC that connect through holes between the warp and weft of the GC weave. A low-elasticity resin is applied to areas of the GC to form a substrate for printed circuit features making up sensor connections and electrodes. Conductive metal ink is selectively applied next to create the copper circuit traces on the GC comprising the heater conductive elements and to create the conductive electrodes on the resin. A second layer of low-elasticity resin is then applied to serve as a flexible protective coating for the conductive heating elements and the conductive circuit elements. TFL says the physical and mechanical properties, appearance, and environmental resistance of the PCW sheet can be adjusted through resin coating, impregnation, and forming processes.

seat heater sensor combo

The completed sensor/heater hybrid as it appears in a seat, left, and its appearance on a thermal camera when in the process of heating.

Like conventional SBR sensors, the hybrid device has upper and lower electrodes that face each other. The use of a GC substrate instead of conventional double-sided adhesive PET film minimizes the rigid area of the sensor so seat occupants are less likely to notice it.

The seat heater material is less than 0.15-mm-thick and is configured with a copper feeder circuit and a printed high-resistance heating carbon film. The carbon film is formed by printing a high-resistance heating carbon ink on the both sides of the heating substrate fully overlapping copper feeder circuit. The heating device generates about 80ºC and the area around the SBR sensor gets up to around 40ºC.

TFL says a variety of materials are candidates for use as surface protection material including non-woven or needle-punched fabrics. Thus the hybrid SBR/heater device can be used in leather seats as well as in seats with less expensive coverings.

You may also like:


  • What are the types and uses of position sensors? 

  • Automobile Hands-Off Detection, Part 1: Basic issues
  • automotive qualification
    What does automotive qualification mean?
  • ADAS sensors
    The role of ADAS sensors in automotive design

  • ADAS developers contemplate sensor fusion

Filed Under: Applications, Automotive/Transportation, FAQ, Featured, Sensor Tips, Sensors Tagged With: FAQ

Primary Sidebar

EE Training Center Classrooms.

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • RF Testing Basics
  • Power Supply Fundamentals
  • Women in Engineering
  • R&D 100 Podcast
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

New Enterprise Solutions for 112 Gbps PAM4 Applications in Development from I-PEX

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Why don't 2 flip-flop synchronizers have a reset?
  • Electrical wire sizing
  • Help designing 1.6KW Isolated AC/DC with Constant Current Output
  • understanding the logic of class object name repeats twice question
  • [Moved]PySpark Training in Bangalore Marathahalli _ Dvs Technologies

RSS Current Electro-Tech-Online.com Discussions

  • Bose SoundTouch 20 - IC identification
  • CE Transistor Amplifier
  • arduino help needed
  • SIMON game with more umph!
  • Washing Machine motor

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy