• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Innovative Traffic Interchanges Help Drivers Avoid Crashes, Save Lives

May 12, 2016 By University of Missouri

Overview of Diverging Diamond Interchanges, or DDIs, that divert drivers to the left side of the road prior to merging onto an interstate, freeway or highway.

The state of Missouri is a pioneer in adopting Diverging Diamond Interchanges (DDIs) named for their innovative design. At these interchanges drivers are diverted to the left side of the road prior to merging onto an interstate, freeway or highway. The first such interchange in the U.S. opened in Springfield, Mo. in 2009. Recent studies from the University of Missouri have found that these unusual designs are safer and save lives.

Statewide implementation of DDIs has been investigated mostly by MU civil engineers who recently published three studies analyzing the safety of these inventive designs. By analyzing more than 10,000 crash reports of DDIs in Missouri and in states that have adopted the designs, civil engineers have determined that overall crashes decreased by more than 50 percent nationwide. Additionally, fatal and injury crashes decreased by more than 70 percent, proving these cutting-edge designs are efficient, effective and life-saving.

Unlike conventional interchanges at which drivers always stay in the right lane and make wide left turns onto the overpass, DDIs are considered safer because they utilize all left turns and decrease crashes at crucial interchanges (see photo). DDIs divert drivers exiting major thoroughfares by requiring traffic on an overpass or underpass to drive on the left side of the trafficway, improving safety by eliminating left-turning conflicts common in diamond interchanges; traffic flow is optimized through traffic signals.

“Before our studies, little information was available about the safety effects of diverging diamonds,” said Carlos Sun, professor of civil and environmental engineering in the MU College of Engineering. “Two of our research studies analyzed several years of crash data and controlled for several variables, including traffic amounts, to account for safety of the interchanges before and after they became DDIs while taking into account DDI ramp lengths, giving us a more complete and robust sample of results that we feel is very comprehensive.”

Henry Brown, a civil research engineer at MU, was lead author on a third study that investigated common practices for diverting traffic while constructing and later maintaining geometric interchanges, which included DDIs. Brown and the team surveyed project managers on construction and maintenance projects for a variety of interchanges to see which practices tended to work the best and poured over construction plans to establish a set of best practices for the various interchanges.

“There’s very little guidance out there on how workers can safely divert drivers and change traffic patterns while implementing DDIs, roundabouts and other designs,” Brown said. “If workers are retrofitting a diamond interchange, they’re actually completely changing the traffic pattern and that just can’t happen by flipping a switch; it takes careful planning.”

Sun, Brown and the team determined that crews should build the interchanges in phases and then close them briefly to install signage to alert drivers to the change in traffic flow. Their study provides real-world guidance to traffic workers and teams as they implement safer traffic designs. “Maintenance of Traffic for Innovative Geometric Designs Work Zones,” recently was published in the Transportation Research Record, Praveen Edara, associate professor of civil and environmental engineering at MU, and Tim Kope and Amir Khezerzadeh, students in the MU College of Engineering, co-authored the paper.

“Safety Evaluation of Seven of the Earliest Diverging Diamond Interchanges Installed in the U.S.,” and “Site-specific Safety Analysis of Diverging Diamond Interchange Ramp Terminals,” also recently were published in in the Transportation Research Record. Boris Claros, a graduate student at MU, partnered with Sun, Edara and researchers from Wayne State University in Michigan, the University of North Carolina and North Carolina State University on the studies.

You Might Also Like

Filed Under: Automotive/Transportation

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

Beyond the drivetrain: sensor innovation in automotive

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • RF-DC rectifier impedance matching
  • GanFet power switch starts burning after 20 sec
  • Four-MOSFET Synchronous Rectification for High-Efficiency LLC Converter
  • How to solve this electronic problem?
  • Colpitts oscillator

RSS Current Electro-Tech-Online.com Discussions

  • Need Help Figuring Out the Schematics Of Circuit Board
  • Wish to buy Battery, Charger and Buck converter for 12V , 2A router
  • applying solder paste from a jar
  • Question i-nears headphones magnetic drivers
  • An Update On Tarrifs
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy