• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Intelligently Managing Renewables

March 25, 2014 By Fraunhofer

OGEMA 2.0 can be used from your tablet, smartphone or computer. Although more and more of our electrical energy is coming from sources where supply is variable – whether from wind turbines, solar parks or biomass facilities – grid structures, industry and private households alike are not yet prepared to deal with the inevitable fluctuations. Smart energy management systems are the way to put robust supply networks in place and to ensure that renewables are harnessed as efficiently as possible.

Software platform brings decentralized providers together

Experts have already conducted a test showing that this setup does indeed work reliably in practice, having combined numerous wind parks, biogas and photovoltaic facilities delivering a total output of over 80 MW in a virtual combined-cycle power plant. Because small providers work together, regional variations in wind and sun can be evened out via the grid or using biogas facilities that can be regulated according to requirement. Surplus energy is either stored or converted into heat. The result is a powerful network that remains decentralized but can still operate as a larger unit in energy trading markets. And it’s not just the facilities brought together in the virtual power plant that can be managed and monitored via the software platform; the energy generated can be marketed, too.

“The results of the Combined Power Plant 2 project demonstrate that network reliability can be guaranteed even when relying purely on renewables,” says Dr. Rohrig. Fraunhofer IWES offers the relevant control mechanisms and forecasting systems for a variety of applications, including the Wind Power Management System and Regional Virtual Power Plant for the energy industry.

Dynamic energy management systems

More and more companies are generating energy themselves, using solar installations or systems that recover energy from manufacturing waste, in an effort to cut costs. Now, researchers from the Fraunhofer Institute for Factory Operation and Automation IFF in Magdeburg have developed dynamic energy management systems that manage distributed energy providers, storage and current energy consumption efficiently. Installed in a company, such a system determines whether enough renewable energy will still be available to charge the fleet of  electric company cars once power has been supplied to the HVAC system. So that the system can operate fully automatically, the amount of energy required and the amount of power expected to be produced on a given day are measured at first for general planning. In the detailed planning stage, data are supplied for the next fifteen minutes.  The researchers use neural networks trained specifically for the particular complex infrastructure to make a forecast, which the system then uses to optimize energy use in the next quarter of an hour automatically.

“We need to change our thinking from the now common generation of power geared toward consumption to consumption geared toward providers. Smart and dynamic management systems ensure that energy is used efficiently all the time,” explains Dr. Przemyslaw Komarnicki from the Fraunhofer IFF.

Technologies for smart energy use in the home

With solar cells on the roof and small combined heat and power plants in the basement, homes are also generating energy. But the energy a household generates is seldom sufficient to meet its combined energy requirements throughout the year. The only option is to buy in energy – preferably when it is at its cheapest. “There are significant savings to be made if you can cleverly combine independently generated energy with variable energy tariffs and storage,” says Jasmin Specht from the Fraunhofer Institute for Integrated Circuits IIS in Erlangen. In an effort to make this a reality, researchers from Fraunhofer IIS, Fraunhofer ISE and Fraunhofer IWES are working on an open software platform called OGEMA 2.0 that will allow modular energy management systems to be developed efficiently.

OGEMA 2.0 energy management systems can control energy producing, storing and consuming devices to achieve their optimal use. Not only do they facilitate the best possible use of independently generated energy in houses or apartments, they also allow users to store excess energy and to recall it when it is required. On top of providing key management functions, the system can also communicate with other participants in the smart energy network. This allows to actively contribute to supply stability and the inclusion into a virtual power plant.

Secure energy management via apps

The smart energy management system can be accessed via various interfaces, including smartphones, tablets and computers. For example, OGEMA 2.0 enables apps that tell users whether they would be better off using the energy generated by their solar cells themselves or whether they should feed it in to the grid. Such apps are also capable of tracking variable energy tariffs and automatically calculate when and how best to use connected devices such as heat pumps, storage systems, air conditioning systems and other smaller consumers of energy. OGEMA 2.0 even helps charge electric vehicles cost-effectively, with the E-Car Communication Manager (ECM) coordinating communication among various charge spots (direct and alternating current), the driver and the car’s battery system. The system features the maximum security level in line with the protection profiles of the BSI (Federal Office for Information Security). This means smartphone users also have secure access to OGEMA 2.0 while on the move.

DesignFast Banner version: 12ce0e24

Filed Under: Power Electronic Tips

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 7
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • How do you find the angle made by two isosceles triangles in a kite?
  • highest frequency capture with arduino input capture
  • Direct digital down conversion NCO frequency and DDC output( complex baseband I,Q)
  • Analog Mixed Signal Validation Engineer, position wanting in Sanford NC
  • How do we test an antenna for its receiver capability?

RSS Current Electro-Tech-Online.com Discussions

  • writing totals in Eprom
  • undefined reference header file in proteus
  • How to test phone socket?
  • ICM7555 IC duty cycle limit at high frequency?
  • intro to PI

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy