• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Laser Guided Codes Advance Single Pixel Terahertz Imaging

June 26, 2013 By Ed Hayward, Boston College

During the imaging method devised by the team, THz waves pass through an object (a); then they strike a silicon semiconductor (b) given specific instructions about how to sample the image; that data is passed along in order to digitally reconstruct an image (c) of the original object in just a few seconds. Credit: Claire M. Watts, Boston CollegeThe universe is awash in terahertz (THz) waves, as harmless as they are abundant. But unlike other regions of the electromagnetic spectrum, THz has proven to be extremely difficult to manipulate in order to capture novel images of objects and materials with which these light waves interact.

Most existing THz imaging devices employ prohibitively expensive technology or require several hours and cumbersome manual controls in order to generate a viable image, according to Boston College Professor of Physics Willie J. Padilla.

Padilla and researchers in his lab recently reported a breakthrough in efforts to create accessible and effective THz imaging. Using both optical and electronic controls, the team developed a single-pixel imaging technique that uses a coded aperture to quickly and efficiently manipulate stubborn THz waves, according to a recent report in the journal Optics Express.

In the so-called terahertz gap, a region of wavelengths that falls between microwave and infrared frequencies, conventional electronic sensors and semiconductor devices are ineffective. Some systems capture only a fraction of a scene and the means to tune these THz waves are inefficient. This has fueled the search for new imaging technologies in order to manipulate THz waves.

Efforts to overcome the challenges of mechanics, cost and image clarity are viewed as a crucial step in efforts to tame the THz gap since imaging and sensing at this frequency holds the potential for advances in areas as divergent as chemical fingerprinting, security imaging of hidden weapons, even real-time skin imaging to promote simple detection of skin cancer.

Central to this challenge is the development of a technology to create efficient masks – similar to the aperture of a camera — capable of tuning THz radiation in order to produce clear images in just a few seconds.

Padilla and graduate students David Shrekenhamer and Claire M. Watts report their new single pixel imaging method centers on what they describe as a “coded aperture multiplex technique” where a laser beam and electronic signals are used to send a set of instructions to a semiconductor so it can guide the reproduction of the image of an object after THz waves have passed through it.

A digital micro-mirror device encodes the laser beam with instructions that direct certain segments of the silicon mask to react and allow a selected sample of the THz waves to pass freely through, consistent with the image pattern. The combination of optical instructions and the reaction of the semiconductor create a THz spatial light modulator, the team reports. Functioning like the aperture of a conventional camera, the modulator then guides the digital reconstruction of the entire image based on a broad sampling of THz waves that have passed through the object.

The team’s experiments found the method could produce masks of varying resolutions, ranging from 63 to 1023 pixels and acquire images at speeds up to .5 Hz, or about 2 seconds. The early findings “demonstrate the viability of obtaining real-time and high-fidelity THz images using an optically controlled SLM with a single pixel detector,” the team concluded.

Padilla said the findings have spurred additional research by his lab into ways to further control THz waves, such as by using the intricate patterns of an engineered metamaterial to further manipulate terahertz waves to create images faster and with increased efficiency.

For more information visit www.bc.edu.

You Might Also Like

Filed Under: Automotive/Transportation

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

zonal architecture

Addressing zonal architecture challenges in the automotive industry

zonal architecture

Addressing zonal architecture challenges in the automotive industry

A2L refrigerants drive thermal drift concerns in HVAC systems

Why outdoor charging demands specialized battery connectors

How Li-ion batteries are powering the shift in off-highway equipment

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Designing for Serviceability: The Role of Interconnects in HVAC Maintenance

From Control Boards to Comfort: How Signal Integrity Drives HVAC Innovation

Built to Withstand: Sealing and Thermal Protection in HVAC Sub-Systems

Revolutionizing Manufacturing with Smart Factories

Smarter HVAC Starts at the Sub-System Level

Empowering aerospace E/E design and innovation through Siemens Xcelerator and Capital in the Cloud

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • SMPS feedback circuit
  • connector model question
  • Can I use TLV75533PDBVR for powering ADC
  • Step Up Push Pull Transformer design / construction
  • Snooping Around is All

RSS Current Electro-Tech-Online.com Discussions

  • More fun with ws2812 this time XC8 and CLC
  • Pic18f25q10 osccon1 settings swordfish basic
  • Pickit 5
  • turbo jet fan - feedback appreciated.
  • I Wanna build a robot
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy