• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

LED bulbs then and now: Teardown of the EcoSmart, Feit, and Sylvania 60-W equivalent LED bulbs

June 14, 2019 By Lee Teschler Leave a Comment

Compared to the LED bulbs of only a few years ago, modern-day versions are simpler and assembled via more automated methods.

Leland Teschler, Executive Editor
If you tore down an LED bulb manufactured a few years ago you’d likely find evidence of hand soldering a bit of kludgy design practices. We found both these practices in evidence when we examined LED bulbs back in 2015. We took bulbs from several manufacturers that all received the highest rankings from Consumer Reports. Several of them used rubber-like potting material apparently to both add stability to the screw threads and to help manage thermal dissipation.

A number of these mass-produced bulbs also displayed evidence of hand soldering. The most typical

potting circa 2015

Potting material encasing an LED bulb circuit (bottom) from a bulb torn down in 2015.

location was in making a connection between the LED plate and the circuit board holding the bulb electronics, but some bulbs contained other instances of solder globs that looked as though they had been done by hand.

Back then, it was also common to see bulbs carrying sizable heat sinks. Many of the bulbs we looked at had metal heat-spreading components weighing in at a few ounces. And the circuitry driving the LEDs tended to be comprised of at least a dozen discrete components placed around the LED driver IC.

Things have changed quite a bit in four years. We recently procured a new batch of 60-W equivalent LED bulbs to see the progress since 2015. Like the last batch, these, too, were selected because they all got high ratings from Consumer Reports.

First consider the EcoSmart A19 LED bulb, which is assembled in China but comes from the Lighting Science Group in Florida. This 9.5-W bulb illustrates how simple LED bulb electronics can be so long as the bulb needn’t be dimmed. Cut away the translucent plastic cover and you’ll find a dozen LEDs sitting on the standard metal plate. The plate attaches to the bulb’s plastic housing via two Philips screws and to the PCB electronics via two connectors.

ecosmart LED plate

The EcoSmart LED plate with PCB connection still in place.

The connectors are worth a comment. They are simple and apparently inexpensive. They make a connection when metal posts on the PCB are pushed through them. They also seem to be designed for one-time use, fine for an LED bulb.

Simple though they are, these connectors are in contrast to the typical LED plate connection scheme we found in Chinese-made bulbs four years ago — the typical means of electrical connection was via soldered wires.

Also interesting are the methods used for connecting the electronics to the bulb base contact and to the metal screw threads.

ecosmart disassembled

The EcoSmart PCB just slides into the plastic housing. The only heat sinking is the LED plate itself. And there are spring-loaded connections to the LED plate and bulb base.

A press-fit connector makes contact with a metal post extending up from the base contact. The metal screw thread connection is via a metal strap that puts a spring-load against it for contact. The metal screw threads and base post are one assembly that presses on to the plastic housing that supports the translucent bulb and the PCB.

The simple configuration of the bulb base contrasts with what we typically found on LED bulbs in 2015. It wasn’t uncommon to find the metal screw threads supported mainly by potting material rather than by the plastic housing. In some bulbs the metal threads didn’t even touch the plastic housing. The potting did all the work. Similarly, the base contact on some bulbs was separate from the metal screw threads. And electrical connections to the base and to the metal screw threads tended to be via discrete wires.

The electronics for LED bulbs that don’t allow dimming can be simple. In the case of the EcoSmart bulb, a single IC (BP9916D) from Bright Power Semiconductor in China handles LED driving chores. It is a buck constant-current device and contains a 500-V power MOSFET for handling LED current.

EcoSmart PCB & ref circuit

Visible on the EcoSmart PCB are the connection pins to the LED plate (left) and the principle semiconductors.

The circuit we found on the bulb PCB is basically the same as the reference circuit on the BP9916D data sheet. Three capacitors, one inductor, a diode bridge, one resistor, one discrete diode, and a fuse for safety are the basic circuit components. There are an additional three resistors that seem to be there as part of a test circuit. The main resistor is a sense resistor used to convert the buck converter from a voltage-output to a current-output device. The discrete diode seems to be there to head off any ringing from the switched inductor/capacitor.

A point to note about the electronics is that the only heat sink is the metal LED plate itself. The PCB fits in the plastic housing via plastic slots. There is a metalized area on the inside of the housing, but it doesn’t touch the PCB – it’s probably there for EMI shielding.

Bright Power doesn’t provide any details about the internal circuits of the LED driver chip. One detail it does provide is that the chip operates in critical conduction mode, meaning that the current in the inductor goes to zero before the next switching cycle initiates. Circuits that operate this way generally include a means of sensing when the inductor current hits zero, and this sensing usually takes place through a small sense winding used to show when voltage on the winding has dropped to near zero. However, a point to note about the Bright Power chip is that it doesn’t need a sense winding. The data sheet mentions something about a patent-pending MOSFET driving technique, which may have something to do with its ability to operate in critical conduction mode.

Sylvania LED bulb

sylvania assembly view

The dead-simple Sylvania LED bulb internals.

We now turn to another undimmable bulb, this one an 8.5-W, 2,700 K unit from Sylvania. If there was a prize given for the simplest possible LED bulb, this one might be a winner. It has the fewest components we’ve ever seen in a bulb recommended by Consumer Reports. It uses discrete wires to make a connection to the bulb threads and base, but the wire to the bulb base isn’t really a wire. It is actually a leaded fuse. So Sylvania cleverly used the fuse leads to take the place of the wire they’d otherwise have needed to get to the base.

As on the EcoSmart bulb, the PCB on this one slides into a plastic carrier. It also connects directly to the LED plate through two tabs which are soldered.

The LED driver circuit is dead simple. There’s no driver IC. Instead, what you find is a diode bridge rectifier and filter capacitor which feeds power to the LEDs. LEDs typically get power from a constant-current source because the LED light qualities vary with the current they carry. And there does, in fact, seem to be a current source in the Sylvania bulb. But it is a simple current source. It consists of a single FET, two bias resistors, and another resistor that sets the LED current.

That’s it. The FET and its two bias resistors sit on the LED plate. The remaining components are on the PCB. As with the EcoSmart bulb, there’s no heat sink other than the LED plate itself.

Finally, we’ll look at a dimmable bulb, one made by Feit Electric in China. Back in 2015, we also tore down a Feit bulb. This one is constructed quite a bit differently than the version we looked at four years ago. For starters, the older bulb carried 36 LEDs, some of them obscured by a weird

sylvania disassembled

This seems to be the schematic of the circuit driving the LEDs on the Sylvania bulb.

plastic shield. The new bulb has only 14 LEDs, though ten of them mount at an angle to the LED plate on a post-like support.

The old Feit bulb had several mechanical elements in common with the new model, including a plastic sleeve that holds the PCB and a big metal casting that seems to be a heat sink. But the old bulb loaded the PCB area with a rubber-like potting material which also provided structural support for the metal screw threads and bulb base.

On LED bulbs in 2015, it wasn’t uncommon to find the metal screw threads supported mainly by rubber-like potting material rather than by the bulb housing. The 2015 Feit bulb is a prime example. Its metal threads didn’t even touch the bulb housing. The potting material did all the work. Similarly, the base contact was separate from the metal screw threads. And electrical connections to the base and to the metal screw threads were via discrete wires.

The new bulb has eliminated the potting material. It uses discrete wires to make connections to the mounting base and LED plate, as did the old bulb. But the wires seem to be machine-soldered and the solder connections to the LED plate are covered with what looks like a corrosion-resistant plastic material.

There are also big differences in the circuitry itself. The old bulb used a flyback converter chip from NXP. The new bulb uses a chip (AP1910) from Anwell Semiconductor in Taiwan. There aren’t a lot of details available about this device other than it is an open-loop peak current controller. The Feit bulb

FEIT LEDs

Feit bulbs seem to favor LEDs in weird orientations, in this case mounted on posts around the plate periphery. The discrete wire solder connections to the PCB are coated with a plastic material.

is dimmable and the Anwell chip appears to be using a filtered version of the dimmer waveform to set the dimming level. The chip can also implement dimming via a PWM input, but there’s no sign of a PWM circuit for dimming on the Feit bulb. A final point to note is that the Feit bulb uses a separate power FET to control the LED current, so we can surmise the Anwell chip doesn’t incorporate one.

All in all, there’s been some progress in mechanical construction since we looked at LED bulbs four years ago. On the circuit side, it looks as though designers have concluded that even dimmable LED drivers don’t need to be complicated.

feit PCB and ref circuit

The Feit PCB and Anwell reference circuit, though what we found on the Feit bulb seems to be much simpler than the reference circuit.

FEIT components

Feit Electric bulb components — The PCB fits in the plastic sleeve that slides up into the metal casting to which the LED plate and plastic bulb attach.

 

 

You Might Also Like

Filed Under: Power Electronic Tips, Teardowns, Video Tagged With: Anwellsemiconductor, Brightpower, ecosmart, feit, nxp, sylvania

Reader Interactions

Leave a Reply Cancel reply

You must be logged in to post a comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Five challenges for developing next-generation ADAS and autonomous vehicles

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • 'HERIC' pairs of IGBTs essential for Mains inverters
  • How to start a startup in VLSI
  • UART Basic Before Writing Code
  • Single ended measuring ports and balanced antenna
  • Thermal modelling of repetitive power pulse

RSS Current Electro-Tech-Online.com Discussions

  • Fun with AI and swordfish basic
  • Simple LED Analog Clock Idea
  • Microinverters and storeage batteries?
  • PIC KIT 3 not able to program dsPIC
  • Is AI making embedded software developers more productive?
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy