• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Low power AFE targets wearable devices

October 6, 2016 By Aimee Kalnoskas

ad8233-pr-image-cmyk-1860x1860-title-print_highresAnalog Devices, Inc. today announced a low power, next-generation biopotential analog front end (AFE) which enables smaller, lighter, and less obtrusive cardiac monitoring devices with longer battery life. The AD8233 AFE is a fully integrated, single-lead electrocardiogram (ECG) front end designed in one compact, easy-to-use component. Typically, developers need to design ECG front ends from individual components, which can add incremental cost and design time. The highly integrated, out-of-the-box AD8233 AFE eliminates these unnecessary costs and extra time, helping developers get products to market more quickly. Additionally, the device’s 2.0mm × 1.7mm tiny size enables the design of wearable health devices that are smaller, lighter, and easier to wear. Bulky, heavy, and obtrusive monitors can be unpleasant for patients to wear and may even interfere with their everyday lives. Longer battery life is another crucial attribute for cardiac monitors and is vital to ensure continuous monitoring that provides accurate data without the interruption of a recharge or battery replacement. The AD8233 AFE’s low microamp-range power consumption results in greatly extended battery life.

Along with its small size, the single-supply (1.7 V to 3.5 V) AD8233 features extremely low quiescent current of 50 μA (typical); lead on/off detection even while in shutdown mode (<1 μA); and 80-dB common-mode rejection ratio (DC to 60 Hz). Electrical noise, a critical specification for cardiac-monitoring devices, is below 10 μV from 0.5 to 40 Hz. The AD8233 also allows for highly flexible filter configurations which are essential to consistent, confident operation in an inherently harsh electrical environment under a range of use cases: a two-pole adjustable high-pass filter, a three-pole adjustable low-pass filter with adjustable gain, and an RFI filter. For ease-of-use and flexibility, it also includes an integrated right leg drive (RLD) amplifier with shutdown plus an uncommitted op amp. Analog Devices also offers an evaluation board, reference design, web based filter design tool and Spice model to facilitate design-in and speed time to market

The post Low power AFE targets wearable devices appeared first on Analog IC Tips.

DesignFast Banner version: 03e1dd97

Filed Under: Amplifiers, Analog IC Tips, Analog ICs, Applications, Data Converters, Wearables Tagged With: adi, analogdevices

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 7
See More >

Current Digital Issue

April 2022 Special Edition: Internet of Things Handbook

How to turn off a smart meter the hard way Potential cyber attacks have a lot of people worried thanks to the recent conflict in Ukraine. So it might be appropriate to review what happened when cybersecurity fi rm FireEye’s Mandiant team demonstrated how to infiltrate the network of a North American utility. During this…

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Photovoltaic MOSFET Drivers - Voltage Rating
  • UCC28070A controller ramp circuit implemented incorrectly?
  • Timing question on RX code
  • Frequency of FM transmitter not changing
  • Altium Routing: through vias being split into two blind vias. Additional question about blind via costs / benifits

RSS Current Electro-Tech-Online.com Discussions

  • software PWM
  • 200mv pulse to 12v lock
  • Background of Members Here
  • UCC28070A ramp circuit is wrong?
  • Treadmill board component burn repair

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy