• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Making It Easier to Plan Offshore Wind Farms

March 11, 2014 By Camilla Aadland, Uni Research

Researcher Jan Tveranger has been involved in creating a tool that will streamline the planning of offshore wind farms. Photo: Camilla AadlandWhen planning an offshore wind farm, it is important to consider the wind, waves and the seabed at the location where the turbines will stand. Researchers have now developed a dedicated tool that gives a combined overview of all the challenges that need to be considered by developers.

“When we began working with the wind power industry, it hit us that no-one really cares about what happens beneath the seabed. Yet there is a difference between installing turbines along a neat and tidy coastline like Denmark’s, and on the shoreline of Norway,” says researcher Jan Tveranger of Uni Research CIPR.

He has been working on creating a tool to streamline planning of offshore wind farms and provide more effective methods of installing offshore wind turbines for almost two years.

“Geology is treated unfairly. Many factors which can affect how installations can be positioned are not taken into consideration,” explains Tveranger.

“No data”

Uni Research CIPR has collaborated with both Norwegian and international companies in its work to develop the new modelling tool.

The seabed in the North Sea has been thoroughly mapped in connection with oil extraction. And the conditions on land are also well documented.

“However, there is no data on the strip between the water’s edge and 60–70 metres beyond it. Nothing has been collected on the precise area in which turbines will be placed. We simply know very little about the seabed,” says the researcher.

Desire to get involved and contribute

Offshore wind power industries are undergoing strong growth, even though Norway did not initially get off to a very good start. Most wind farms have been built in the UK, Germany, Denmark and the Baltics, although China and the USA are well on their way to becoming major players.

“We have great industrial benefits in Norway, which means we can get involved and contribute. We have experience from energy, shipping, offshore and mapping. Technology developed in Norway will be used in foreign projects. This is where the potential exists today,” says Tveranger.

In Norway, offshore wind power has not initially been competitive as it is not profitable enough. To date, the offshore wind power industry is dependent on subsidies in order to be able to exist here in Norway.

“We believe that we can contribute with research which could reduce the costs and makes wind farms more efficient,” explains Tveranger.

Controversial

A lot needs to be put in place when processing licence applications.

“Offshore wind farms are more controversial than an oil platform which is located far out into the North Sea. Installations like these, closer to the coast, come into conflict with business interests, housing, protected areas, leisure activities, the Norwegian Armed Forces, spawning areas, shipping lanes and much, much more,” he says.

This means that large amounts of data need to be processed.

“It is incredibly difficult to obtain an overview, and there are currently no planning tools which do this within the wind power industry. This makes planning difficult,” says Tveranger.

Been there before

He compares the situation to how things stood in the oil industry 15–20 years ago, before the industry began to plan using modelling tools.

“Our main idea was to use tools from the offshore industry, and create a corresponding model for the offshore wind power industry,” says Tveranger.

The models used in the wind power industry today include atmospheric and oceanographic factors, in other words wind and waves and biological information.

“We have created an environment model which also includes the seabed conditions,” adds Tveranger.

Some underground data

The researchers have looked at the conditions in two different locations for which licences have been granted to develop offshore wind power.

“We discovered that there was astonishingly little underground data available for the 80 square metres in which the wind turbines would be located. Sediment samples were taken and a few seismic lines distributed, but that was it,” explains Tveranger.

The area was unsuitable

The wind turbines were to be positioned in lines and rows, but when Tveranger and his colleagues carried out an analysis of the area, it turned out that large sections were unsuitable for the type of turbine foundations meant to be located there.

“Essentially, all proposed turbine locations in the application were unsuitable. It would have cost astronomic amounts to position the turbines there as each individual turbine foundation would have needed to be designed and built separately,” continues Tveranger.

Intent to develop further

The testing and development of the modelling tool was gradually moved to another wind power licence just outside Karmøy. This is where researchers developed a model that provides detailed information on which type of turbine foundations can be located where. It also shows the consequences of changing different parameters, such as sea depth, sediment thickness and surface gradient.

The researchers are now discussing the creation of a full demonstration model with the supplier of the tool they used as a basis. The plan is to build a tool that can create 3D models which include all parameters that need to be considered by developers of offshore wind farms.

“This is a perfect example of how technology transfer can work in ways that were not considered before,” concludes Tveranger.

You Might Also Like

Filed Under: Power Electronic Tips

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

Beyond the drivetrain: sensor innovation in automotive

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • BOM sent to Contract assemblers doesnt correspond to schem
  • Amperage changes in DC-DC conversion
  • I/O constraint for Hold check
  • problem identifying pin purpose on PMA5-83-2WC+ amplifier
  • How to best test Electrolytic capacitors for premature failure reduced life?

RSS Current Electro-Tech-Online.com Discussions

  • stud mount Schottky diodes
  • LED circuit for 1/6 scale diorama
  • using a RTC in SF basic
  • Hi Guys
  • Can I use this charger in every country?
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy