• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Molten Storage and Thermophotovoltaics Offer New Solar Power Pathway

July 28, 2016 By Georgia Institute of Technology

A new wrinkle on an old technology — solid-state thermophotovoltaics (TPV) — could provide a high-efficiency alternative for directly converting high-temperature heat from concentrated solar thermal to utility-scale electricity.

New computer modeling suggests that high temperature TPV conversion — which captures infrared radiation from very hot surfaces — could one day rival combined-cycle turbine systems when combined with thermal storage using liquid metal at temperatures around 1,300 degrees Celsius. Advances in high-temperature components and improved system modeling, combined with the potential for conversion costs an order of magnitude lower than those of turbines, suggest that TPV could offer a pathway for efficiently storing and producing electrical power from solar thermal sources, a new study suggests.

The underlying technologies of high temperature storage and thermophotovoltaic conversion could also be used to produce grid-scale batteries able to rapidly supplement other power sources by storing heat for quick conversion to electricity. The research, supported by ARPA-E, was reported July 4 in the journal Energy and Environmental Science by researchers at the Georgia Institute of Technology.

“The goal for our study was to provide a heat transfer and thermodynamic perspective on a system that combines concentrated solar power (CSP) with thermal storage and TPV to show that such a system is worthy of renewed attention,” said Asegun Henry, an assistant professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech. “In the context of the full system, we suggest that the efficiency could one day rival the best heat engines available on planet today.”

TPV operates on the same principle as solar cells in wide use today, but converts photons at infrared wavelengths rather than those in the visible spectrum. Infrared is the predominant kind of heat and light emitted by heaters that glow red-hot.

Most research reported in the energy literature suggests that the conversion rate of TPV would be less than 20 percent, not competitive with other heat engines. But Henry believes those calculations do not properly consider the conversion wavelengths or account for efficiencies possible when the full heat delivery system is considered.

“The entire system could be quite efficient if we understand where the heat is flowing and design appropriately,” Henry said. “We believe there is a pathway to make these TPV cells an order of magnitude cheaper than turbines for converting thermal energy to electricity.”

The heat would be supplied by a CSP system collecting the sun’s thermal energy using reflectors. The heat would be used to melt silicon, which could be stored in large insulated reservoirs until needed; the heat would then be released as the silicon solidifies. By moving the TPV cells when their power isn’t needed, the system could be rapidly switched on and off to supplement electricity from wind or direct solar PV sources, Henry said.

“It’s the dream of utility companies to have a resource that could go from zero to full power in a matter of seconds,” he said. “With the right insulation and shading of the cells, we could switch them on and off faster than any other conversion technology.”

The critical challenge to making renewable energy competitive with fossil fuels at the utility scale is making the electricity dispatchable. The cost advantages of thermal storage over electrochemical storage also make a TPV with thermal energy storage (TES) system attractive for converting and storing energy for use on the grid, said Hamid Reza Seyf, a graduate research assistant who did the system modeling.

“We are combining the great economic advantages of TES with the potential for low cost and high performance derived from TPV cells fabricated on reusable substrates, with high reflectivity back reflectors for photon recycling,” he said. “If solar energy is produced and not needed, you could use it to produce thermal energy that could be stored and discharged to TPV power block when needed. The extremely long lifetimes, high round-trip efficiency, and low cost of the thermal storage compared to electrochemical batteries make the TES very attractive.”

If the TPV power block could be made 60 percent efficient, it could compete with most cost effective and efficient heat engine that has ever been achieved commercially, which is accomplished through a tandem turbine based cycle. The cost of turbines is well established and unlikely to see significant decrease, hence the only way to reduce their cost is by increasing their efficiency. However, because current turbines are extremely efficient and operate near their thermodynamic limit, there is little room for efficiency enhancement. TPV power block not only has the potential for lowering the cost but also has much more room for efficiency improvement, Seyf said.

The computational model shows that a TPV system coupled with concentrated solar and storage could be as much as 65 percent efficient. But attaining that would require a long-term research initiative.

In their model, the group studied the effects of a silver-based back surface reflector (BSR) to bounce unused light back to the emitter. The study quantified the importance of the BSR reflectivity to the overall system performance.

Henry’s research group has recently demonstrated pumps, storage containers and other components that can operate at extreme temperatures of 1,300 degrees Celsius and above. The researchers hope their new paper encourages others to pursue TPV improvements — including fabrication of TPV cells on reusable substrates — that could lead to development of real-world systems at costs competitive with fossil fuels.

“My hope is that this paper will help bring together the thermophotovoltaics and PV community with the CSP community to realize that the thermal and PV system takes advantage of both sides,” said Henry. “This is a heat engine that realistically may have a shot at beating the current record. This is a completely different technology, and there is a lot of research yet to be done.”

This project was supported by DOE ARPA-E, grant number DEAR0000339. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the sponsor.

You Might Also Like

Filed Under: Power Electronic Tips

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

Beyond the drivetrain: sensor innovation in automotive

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • problem identifying pin purpose on PMA5-83-2WC+ amplifier
  • Voltage Regulator Sizing Question
  • Genetic algorithm code in matlab for cost optimization
  • SDR as wideband spectrum analyzer
  • GanFet power switch starts burning after 20 sec

RSS Current Electro-Tech-Online.com Discussions

  • Electronic board faulty?!?
  • Can I use this charger in every country?
  • using a RTC in SF basic
  • An Update On Tarrifs
  • Wish to buy Battery, Charger and Buck converter for 12V , 2A router
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy