• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

New chip captures power from multiple sources

July 8, 2012 By Massachusetts Institute of Technology

Researchers at MIT have taken a significant step toward battery-free monitoring systems — which could ultimately be used in biomedical devices, environmental sensors in remote locations and gauges in hard-to-reach spots, among other applications.

Previous work from the lab of MIT professor Anantha Chandrakasan has focused on the development of computer and wireless-communication chips that can operate at extremely low power levels, and on a variety of devices that can harness power from natural light, heat and vibrations in the environment. The latest development, carried out with doctoral student Saurav Bandyopadhyay, is a chip that could harness all three of these ambient power sources at once, optimizing power delivery.

The energy-combining circuit is described in a paper being published this summer in the IEEE Journal of Solid-State Circuits.

“Energy harvesting is becoming a reality,” says Chandrakasan, the Keithley Professor of Electrical Engineering and head of MIT’s Department of Electrical Engineering and Computer Science. Low-power chips that can collect data and relay it to a central facility are under development, as are systems to harness power from environmental sources. But the new design achieves efficient use of multiple power sources in a single device, a big advantage since many of these sources are intermittent and unpredictable.

“The key here is the circuit that efficiently combines many sources of energy into one,” Chandrakasan says. The individual devices needed to harness these tiny sources of energy — such as the difference between body temperature and outside air, or the motions and vibrations of anything from a person walking to a bridge vibrating as traffic passes over it — have already been developed, many of them in Chandrakasan’s lab.

Combining the power from these variable sources requires a sophisticated control system, Bandyopadhyay explains: Typically each energy source requires its own control circuit to meet its specific requirements. For example, circuits to harvest thermal differences typically produce only 0.02 to 0.15 volts, while low-power photovoltaic cells can generate 0.2 to 0.7 volts and vibration-harvesting systems can produce up to 5 volts. Coordinating these disparate sources of energy in real time to produce a constant output is a tricky process.

So far, most efforts to harness multiple energy sources have simply switched among them, taking advantage of whichever one is generating the most energy at a given moment, Bandyopadhyay says, but that can waste the energy being delivered by the other sources. “Instead of that, we extract power from all the sources,” he says, by switching rapidly between them. “At one particular instant, energy is extracted from one source by our chip, but the energy from other sources is stored in capacitors” and later picked up, so none goes to waste.

Another challenge for the researchers was to minimize the power consumed by the control circuit itself, to leave as much as possible for the actual devices it’s powering — such as sensors to monitor heartbeat, blood sugar, or the stresses on a bridge or a pipeline. The control circuits optimize the amount of energy extracted from each source.

The system uses an innovative dual-path architecture. Typically, power sources would be used to charge up a storage device, such as a battery or a supercapacitor, which would then power an actual sensor or other circuit. But in this control system, the sensor can either be powered from a storage device or directly from the source, bypassing the storage system altogether. “That makes it more efficient,” Bandyopadhyay says. The chip uses a single time-shared inductor, a crucial component to support the multiple converters needed in this design, rather than three separate ones. 

David Freeman, chief technologist for power-supply solutions at Texas Instruments, who was not involved in this work, says, “The work being done at MIT is very important to enabling energy harvesting in various environments. The ability to extract energy from multiple different sources helps maximize the power for more functionality from systems like wireless sensor nodes.”

Only recently, Freeman says, have companies such as Texas Instruments developed very low-power microcontrollers and wireless transceivers that could be powered by such sources. “With innovations like these that combine multiple sources of energy, these systems can now start to increase functionality,” he says. “The benefits from operating from multiple sources not only include maximizing peak energy, but also help when only one source of energy may be available.”

The work has been funded by the Interconnect Focus Center, a combined program of the Defense Advanced Research Projects Agency and companies in the defense and semiconductor industries.

You Might Also Like

Filed Under: Components, Robotics/Drones

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Integrating MEMS technology into next-gen vehicle safety features

Five challenges for developing next-generation ADAS and autonomous vehicles

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Designing for Serviceability: The Role of Interconnects in HVAC Maintenance

From Control Boards to Comfort: How Signal Integrity Drives HVAC Innovation

Built to Withstand: Sealing and Thermal Protection in HVAC Sub-Systems

Revolutionizing Manufacturing with Smart Factories

Smarter HVAC Starts at the Sub-System Level

Empowering aerospace E/E design and innovation through Siemens Xcelerator and Capital in the Cloud

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • connector model question
  • Sendust vs Ferrite for SMPS
  • sim7090g
  • Innovus Scan Reorder deletes Scan In Pad
  • The GaN revolution must now happen?

RSS Current Electro-Tech-Online.com Discussions

  • It's Amazing What A Buck And A Quarter....
  • Microinverters and storeage batteries?
  • ac current limiting
  • More fun with ws2812 this time XC8 and CLC
  • Impact of Tariffs on PCB Fab
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy