• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
      • Power Electronics & Programmable Power
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

New technique uses ‘simulated’ human heart to screen drugs

July 21, 2014 By EurekAlert

This is Dr. Helen Maddock from the Centre for Applied Biological and exercise Sciences at Coventry University.  Credit: Coventry UniversityA Coventry University scientist has developed a pioneering new way – using samples of beating heart tissue – to test the effect of drugs on the heart without using human or animal trials.

The breakthrough is the work of Dr Helen Maddock – an expert in cardiovascular physiology and pharmacology from the University’s Centre for Applied Biological and Exercise Sciences – and could lead to the lives of hundreds of future patients being saved and the quality of their treatments improved.

Adverse effects of drugs on the cardiovascular system are a major cause of many medical treatments failing, but heart-related side-effects can often only be detected once a drug is being used on patients in clinical trials – by which time it is too late.

Dr Maddock’s ‘in vitro’ technique – which means ‘in glass’ in reference to it taking place in a laboratory environment rather than in a living organism – uses a specimen of human heart tissue attached to a rig allowing the muscle to be lengthened and shortened whilst being stimulated by an electrical impulse, mimicking the biomechanical performance of cardiac muscle.

Trial drugs can then be added to the tissue to determine whether or not they have an adverse effect on the force of contraction of the muscle (and therefore of the heart), a test that could only previously be performed ‘in vivo’ – i.e. on living animals – often with inconclusive results.

This ‘simulated’ cardiovascular system – known as a work-loop assay – provides the most realistic model of heart muscle dynamics in the world to date, and opens up unprecedented possibilities for identifying negative effects of drugs early and inexpensively – potentially saving lives and speeding up the development of successful drug treatments.

Dr Maddock has formed a spin-out company – InoCardia Ltd – from Coventry University to begin implementing her groundbreaking technique in the pharma industry, and it has already received a quarter of a million pound investment from Warwickshire-based technology investment firm Mercia Fund Management.

Dr Maddock, who spent almost ten years developing the technique, said:

“I’m delighted that our research is at a stage where we can confidently say the work-loop assay we’ve created is the world’s only clinically relevant in vitro human model of cardiac contractility. It has the potential to shave years off the development of successful drugs for a range of treatments.

“Both the pharma industry and regulators recognise that existing methods of assessing the contractility of the heart are fraught with problems, so we’re incredibly excited to be able to introduce a new way to accurately determine the safety of drugs in respect of the heart without the need to test on humans or animals.”

Mark Payton, managing director of Mercia Fund Management, added:

“InoCardia benefits from a proprietary approach following many years of investigation by Helen and her team, and offers the potential for early screening of compounds in development without the initial need for extensive animal trials. Through a markedly accelerated drug development process, this will decrease timelines to drug development, and as a consequence greatly reduce the cost of new drug development. The end beneficiary will, of course, be patients receiving novel treatments sooner.”

Dr Maddock and InoCardia Ltd are already in discussions with a multinational biopharmaceutical company with a view to applying the assay in industry.

Original release: http://www.eurekalert.org/pub_releases/2014-07/cu-ntu072114.php

Filed Under: Components

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

New Enterprise Solutions for 112 Gbps PAM4 Applications in Development from I-PEX

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Feedback loop of TL431 based linear regulator?
  • timer event handling in C# scpi equipment communication
  • Op-amp simulation
  • UCC28070A PFC controller in DCM?
  • How to reduce the ring and spike on VDS of MOSFET

RSS Current Electro-Tech-Online.com Discussions

  • 2nd pcb design program?
  • My NE555 chips gone bad
  • Nokia 5110 HW in Oshonsoft
  • alternate of 80386/486 microprocessor
  • Drill speed controller fault

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy