• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

No More Iron Man: Submarines Now Have Soft, Robotic Arms

October 3, 2018 By Wyss Institute for Biologically Inspired Engineering at Harvard

The human arm can perform a wide range of extremely delicate and coordinated movements, from turning a key in a lock to gently stroking a puppy’s fur. The robotic “arms” on underwater research submarines, however, are hard, jerky, and lack the finesse to be able to reach and interact with creatures like jellyfish or octopuses without damaging them. Previously, the Wyss Institute for Biologically Inspired Engineering at Harvard University and collaborators developed a range of soft robotic grippers to more safely handle delicate sea life, but those gripping devices still relied on hard, robotic submarine arms that made it difficult to maneuver them into various positions in the water.

Now, a new system built by scientists at the Wyss Institute, Harvard’s John A. Paulson School of Engineering and Applied Sciences (SEAS), Baruch College, and the University of Rhode Island (URI) uses a glove equipped with wireless soft sensors to control a modular, soft robotic “arm” that can flex and move with unprecedented dexterity to grasp and sample delicate aquatic life. This system could one day enable the creation of submarine-based research labs where all the delicate tasks scientists do in a land-based laboratory could be done at the bottom of the ocean. Insights from this work could potentially have value for medical device applications as well. The research is published in Scientific Reports.

“This new soft robotic arm replaces the hard, rigid arms that come standard on most submersibles, enabling our soft robotic grippers to reach and interact with sea life with much greater ease across a variety of environments and allowing us to explore parts of the ocean that are currently understudied,” said first author Brennan Phillips, Ph.D., an Assistant Professor at URI who was a Postdoctoral Fellow at the Wyss Institute and SEAS when the research was completed.

The apparatus developed by Phillips and his colleagues features bending, rotary, and gripping modules that can be easily added or removed to allow the arm to perform different types of movements based on the task at hand – a significant benefit, given the diversity of terrain and life found in the ocean. Other improvements over existing soft manipulators include a compact and robust hydraulic control system for deployment in remote and harsh environments. The whole system requires less than half the power of the smallest commercially available deep-sea electronic manipulator arm, making it ideal for use on manned undersea vehicles, which have limited battery capacity.

The arm is controlled wirelessly via a glove equipped with soft sensors that is worn by a scientist, who controls the arm’s bending and rotating by moving their wrist and the grippers by curling their index finger. Those movements are translated into the opening and closing of various valves in the system’s seawater-powered hydraulic engine. Different types of soft grippers can be attached to the end of the arm to allow it to interact with creatures of varying shape, size, and delicacy, from hard, brittle corals to soft, diaphanous jellyfish.

“The currently available subsea robotic arms work well for oil and gas exploration, but not for handling delicate marine life – using them is like trying to pick up a napkin with a metal crab claw,” said co-author David Gruber, Ph.D., who is a Professor of Biology at Baruch College, CUNY and a National Geographic Explorer. “The glove control system allows us to have much more intuitive control over the soft robotic arm, like how we would move our own arms while SCUBA diving.”

The robotic arm and gripper system was field-tested from a 3-person submarine in the unexplorered deep-sea ecosystems of Fernando de Noronha Archipelago, Brazil. It was successfully able to interact with or collect delicate mid-water and deep-sea organisms like a glass sponge, a sea cucumber, a branching coral, and free-floating bioluminescent tunicates. Different modules were quickly and easily swapped into the arm in order to better maneuver the grippers to reach its target organism, or in the case of any one module being damaged, without needing to dismantle the entire arm.

“This low-power, glove-controlled soft robot was designed with the future marine biologist in mind, who will be able to conduct science well beyond the limits of SCUBA and with a comparable or better means than a via a human diver,” said Robert Wood, Ph.D., a senior author of the paper who is a Founding Core Faculty member of the Wyss Institute as well as the Charles River Professor of Engineering and Applied Sciences at SEAS.

The researchers are continuing to refine their designs and are incorporating non-invasive DNA and RNA sampling capabilities into the actuating units of the arm system, with the goal of being able to capture fragile sea life, perform a series of experiments in an “underwater laboratory,” and release them unharmed.

“The Wyss Institute’s goal is to get scientific discoveries out of the lab and into the world, but sometimes we have to figure out how to modify the scientific laboratory itself so that it can be moved out of academia in order to be able to probe real-world environments. This research marks the beginning of that possibility for the deep sea, and the advances they describe could have much broader value, even for medical and surgical applications,” said Donald Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute who is also the Judah Folkman Professor of Vascular Biology at HMS and the Vascular Biology Program at Boston Children’s Hospital, and Professor of Bioengineering at SEAS.

You Might Also Like

Filed Under: Robotics/Drones

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Why outdoor charging demands specialized battery connectors

How Li-ion batteries are powering the shift in off-highway equipment

Integrating MEMS technology into next-gen vehicle safety features

Five challenges for developing next-generation ADAS and autonomous vehicles

Robust design for Variable Frequency Drives and starters

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Designing for Serviceability: The Role of Interconnects in HVAC Maintenance

From Control Boards to Comfort: How Signal Integrity Drives HVAC Innovation

Built to Withstand: Sealing and Thermal Protection in HVAC Sub-Systems

Revolutionizing Manufacturing with Smart Factories

Smarter HVAC Starts at the Sub-System Level

Empowering aerospace E/E design and innovation through Siemens Xcelerator and Capital in the Cloud

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • LLC converter shoot through currents at start-up
  • Step Up Push Pull Transformer design / construction
  • How to create custom diode and add its netlist into Ansys circuit designer schematic?
  • Two sections broadband impedance matching
  • connector model question

RSS Current Electro-Tech-Online.com Discussions

  • Wierd makita battery
  • More fun with ws2812 this time XC8 and CLC
  • I Wanna build a robot
  • Impact of Tariffs on PCB Fab
  • Earbud wiring w/ mic
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy