• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Novel Coating Gives LEDs a Cozy, Warm Glow

November 19, 2014 By THE OPTICAL SOCIETY

When the 2014 Nobel Prize in physics was awarded this October to three Japanese-born scientists for the invention of blue light emitting diodes (LEDs), the prize committee declared LED lamps would light the 21st century.

Now researchers from the Netherlands have found a novel way to ensure the lights of the future not only are energy efficient but also emit a cozy warmth.

At low current the coated LEDs emit a cozy, warm glow compared to uncoated reference LEDs. Image credit: Hugo J. Cornelissen

“We demonstrated a seemingly simple – but in fact sophisticated – way to create LED lights that change in a natural way to a cozy, warm white color when dimmed,” said Hugo Cornelissen, a principal scientist in the Optics Research Department at Philips Research Eindhoven, a corporate scientific research entity owned by the company Royal Philips in the Netherlands.

Cornelissen and his colleagues from the Eindhoven University of Technology, Netherlands describe their new LEDs in a paper published today in The Optical Society‘s (OSA) open-access journal Optics Express.

Incandescent lamps naturally emit warmer colors when dimmed, and Cornelissen said our general preference for redder colors in low-light situations might even have developed far back in time, when humans “experienced the daily rhythm of sunrise, bright daylight at noon, and sunset, each with their corresponding color temperatures.”

LEDs, however, don’t normally change color at different light intensities. Other groups have used multiple color LEDs and complex control circuitry to make lights that turn redder as the power is turned down. The added complexity comes with its drawbacks: multiple components can increase the cost and the risk of failure, and mixing the light from multiple LEDs without creating color shadows and other light artifacts is a tricky business.

The Dutch research team tried an entirely different approach to creating cozy LEDs. The scientists had noticed that when they embedded LEDs in coated textiles or transparent materials, the color of the emitted light would sometimes change.

“After finding the root cause of these effects and quantitatively understanding the observed color shift, we thought of a way to turn the undesired color changes into a beneficial feature,” said Cornelissen.

Starting with White LEDs

They began with cold white LEDs, which can be made from blue LEDs surrounded by a material known as a phosphor. Part of the blue light is absorbed by the phosphor and re-emitted at a different color. The multiple colors combine to form white light.

Cornelissen and his colleagues knew that the color of the white light could be shifted toward the warmer end of the spectrum if more of the blue light is absorbed and re-emitted by the phosphor. What they describe in the new paper is how they developed a novel – and temperature-dependent – way to create this shift.

The scientists made a coating from a composite of liquid crystal and polymeric material. The composite normally scatters light, but if it is heated above 48 degrees Celsius (approximately 118 degrees Fahrenheit), the liquid crystal molecules rearrange and the composite becomes transparent.

When the team covered white LEDs with the coating and turned up the power, the temperature increased enough to make the coating transparent, and the LEDs emitted a cold white color. When the power was turned down, the coating reorganized into a scattering material that bounced back more of the blue light into the phosphor, generating a warmer glow.

The scientists later fine-tuned the LED design and used multiple phosphors to create lights that comply with industry lighting standards across a range of currents and colors.

“We might see products on the market in two years, but first we’ll have to prove reliability over time,” Cornelissen said. “That is one of the important things to do next.”

The team believes the new lights could help speed up the acceptance and widespread use of LED technology, especially in the household and hospitality markets, “where there is a need to create a warm and cozy atmosphere,” Cornelissen said.

You Might Also Like

Filed Under: Power Electronic Tips

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • ADS optimization error
  • How can I get the frequency please help!
  • Question LCD LED IPS display
  • How to get started with RTL design?
  • RFsoc4x2 fpga diagram request

RSS Current Electro-Tech-Online.com Discussions

  • 100uF bypass Caps?
  • Fuel Auto Shutoff
  • Actin group needed for effective PCB software tutorials
  • how to work on pcbs that are thick
  • compatible eth ports for laptop
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy