• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

NUS Engineers Achieve Significant Breakthrough In Spin Wave-Based Information Processing Technology

July 24, 2017 By National University of Singapore

Conventional electronic devices make use of semiconductor circuits and they transmit information by electric charges. However, such devices are being pushed to their physical limit and the technology is facing immense challenges to meet the increasing demand for speed and further miniaturisation. Spin wave based devices, which utilise collective excitations of electronic spins in magnetic materials as a carrier of information, have huge potential as memory devices that are more energy efficient, faster, and higher in capacity.

While spin wave based devices are one of the most promising alternatives to current semiconductor technology, spin wave signal propagation is anisotropic in nature – its properties vary in different directions – thus posing challenges for practical industrial applications of such devices.

A research team led by Professor Adekunle Adeyeye from the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering, has recently achieved a significant breakthrough in spin wave information processing technology. His team has successfully developed a novel method for the simultaneous propagation of spin wave signals in multiple directions at the same frequency, without the need for any external magnetic field.

Using a novel structure comprising different layers of magnetic materials to generate spin wave signals, this approach allows for ultra-low power operations, making it suitable for device integration as well as energy-efficient operation at room temperature.

“The ability to propagate spin waves signal in arbitrary directions is a key requirement for actual circuitry implementation. Hence, the implication of our invention is far-reaching and addresses a key challenge for the industrial application of spin wave technology. This will pave the way for non-charge based information processing and realisation of such devices,” said Dr Arabinda Haldar, who is the first author of the study and was formerly a Research Fellow with the Department at NUS. Dr Haldar is currently an Assistant Professor at Indian Institute of Technology Hyderabad.

The research team published the findings of their study in the scientific journal Science Advances on 21 July 2017. This discovery builds on an earlier study by the team that was published in Nature Nanotechnology in 2016, in which a novel device that could transmit and manipulate spin wave signals without the need for any external magnetic field or current was developed. The research team has filed patents for these two inventions.

“Collectively, both discoveries would make possible the on-demand control of spin waves, as well as the local manipulation of information and reprogramming of magnetic circuits, thus enabling the implementation of spin wave based computing and coherent processing of data,” said Prof Adeyeye.

Moving forward, the team is exploring the use of novel magnetic materials to enable coherent long distance spin wave signal transmission, so as to further the applications of spin wave technology.

DesignFast Banner version: 12ce0e24

Filed Under: Components

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 7
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • How do you find the angle made by two isosceles triangles in a kite?
  • highest frequency capture with arduino input capture
  • Direct digital down conversion NCO frequency and DDC output( complex baseband I,Q)
  • Analog Mixed Signal Validation Engineer, position wanting in Sanford NC
  • How do we test an antenna for its receiver capability?

RSS Current Electro-Tech-Online.com Discussions

  • writing totals in Eprom
  • undefined reference header file in proteus
  • How to test phone socket?
  • ICM7555 IC duty cycle limit at high frequency?
  • intro to PI

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy