• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

OLED Brings Out the Shine

May 6, 2013 By Fraunhofer-Gesellschaft

Microdisplays are barely larger than the human eye. A new, cost-effective process now lets them shine markedly brighter. (© Fraunhofer COMEDD)Screens made of organic light diodes promise unfathomable possibilities. Yet high production costs often prevent their widespread use. A new kind of production saves not only costs, but also improves the radiance of the OLED.

The age of the good old cathode ray tube has long since passed. According to the German Federal Statistics Office, by 2011, almost every other German household had a flat screen television. The question, however, is how long our boob tubes – measuring just a few centimeters thick – will manage to hold onto the moniker “flat.” Rigo Herold of the Fraunhofer Research Institution for Organics, Materials and Electronic Devices COMEDD is already thinking in totally different dimensions in any case: “In 2008, the first manufacturers introduced displays that were less than a millimeter thick.” The technology behind these incredibly narrow matt screens is called OLED. The abbreviation stands for “Organic Light Emitting Diode.” “OLEDs emit light themselves, and unlike the ordinary liquid crystal display screens of today, they work without background lighting. For this reason, it will soon be possible to manufacture very thin and simultaneously very flexible, bendable displays,” explains Herold, who is in charge of “IC and Systems Design” at COMEDD. What you previously knew only from science fiction flicks could also change our everyday viewing experience within the foreseeable future: Screens as thin as paper, applied to clothing, curtains and even windows.

Yet the technology is still in its infancy stages. Beside the minimal lifespan, up to now the extremely high acquisition costs are impeding a widespread breakthrough. “Producing organic light diodes is still very expensive. This is why you still cannot purchase large-scale OLED television screens currently. Right now, the technology is being used primarily for very small screen sizes of just a few square centimeters. Examples include the ViewFinder on digital cameras or – even smaller – on cellphone beamers and data glasses,” as Herold describes the state of the art. Together with his colleagues, he is researching new production methods for microdisplays.

Subpixels applied directly onto microdisplays

The researchers recently achieved an important breakthrough in this area: Together with VON ARDENNE Anlagentechnik GmbH they are developing a technology for producing mini-OLED screens without color filters. That makes the production process not only cheaper, but even improves the luminosity of the microdisplays. Until now, the color filter suppressed the self-radiance of the OLED, so that only about 20 percent of the emitted light could be used. Two negative effects from the filter sheet being used are responsible for this: First, it suppresses two of the three color ranges of an OLED subpixel; second, as an additional layer applied over the OLED, it automatically dims the generated light.

In order to circumvent the use of the color filter, the red, green and blue subpixels – which are integral to the depiction of a color image – must be loaded onto the OLED directly. That was previously impossible. “The subpixels in the tiny display are typically about 8 square micrometers in size. However, conventional technology only allowed for the processing of units greater than 50 square micrometers,” says Herold, illustrating the challenge to be mastered. In order to resolve this set of problems, scientists employed a special technology made by VON ARDENNE, their partner company. This technology facilitates the targeted vaporization of organic layers locally, under heat. In this manner, surfaces can be processed that are smaller than 10 square micrometers. “In order to use the technology for OLED microdisplays, we redesigned the entire manufacturing process. It is therefore possible to load the red, green and blue color pixels directly. The use of the color filter is no longer necessary and it is possible to use 100 percent of the light emitted,” says Herold.

Smartphones hold up longer

Still, the OLED not only shine brighter, the new production process is also less expensive. Color filters are very expensive to produce. Depending on the application, they have to be custom-designed, consist of suitable materials and be mounted properly. If the filter shifts, for instance, that could have a negative impact on the image quality. “Ultimately, the consumer benefits as well: We all know that our mobile devices, like smartphones and digital cameras, consume a lot of energy each day. The less is used for the color presentation of the displays, the longer our batteries will last for telephone calls, surfing or taking pictures,” Herold concludes.

You Might Also Like

Filed Under: Artificial intelligence

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Integrating MEMS technology into next-gen vehicle safety features

Five challenges for developing next-generation ADAS and autonomous vehicles

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Designing for Serviceability: The Role of Interconnects in HVAC Maintenance

From Control Boards to Comfort: How Signal Integrity Drives HVAC Innovation

Built to Withstand: Sealing and Thermal Protection in HVAC Sub-Systems

Revolutionizing Manufacturing with Smart Factories

Smarter HVAC Starts at the Sub-System Level

Empowering aerospace E/E design and innovation through Siemens Xcelerator and Capital in the Cloud

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • unknown component z1
  • Collector Current Low side Has a large drop respect High Side during Miller during Double Pulse Test
  • is there vay for credit card size phone charger?
  • Question on options of set_clock_group
  • inconclusive verification in formality.

RSS Current Electro-Tech-Online.com Discussions

  • Fixing board, Easy question HEX SCHMITT
  • Can I make two inputs from one??
  • Display TFT ST7789 (OshonSoft Basic).
  • Home Smoke detectors are all Beeping Batteries are not dead.???
  • The Analog Gods Hate Me
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy