• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

On-Demand 3-D Printing Of Tiny Magic Wands

October 23, 2017 By Department of Energy, Office of Science

The Science

Structures built on the scale of nanometers (a human hair is around 80,000 nanometers wide) could build new and improved light sources, sensors and computers. Scientists created a novel way to 3-D print on virtually any material or shape without costly and time-consuming masking steps. In a patterned sequence, researchers used a focused electron beam to dissociate surface-bound carbon- and metal-containing molecules and deposit them with precision. The result is a 3-D gold-carbon shape (shown here in a style reminiscent of Gandalf’s staff). They purified these structures in situ (inside the growth reactor) to remove carbon. They tested the resulting freestanding pure-gold architectures for plasmonic behavior—tiny, rapid waves of electron density created when light hits metal.

The Impact

The 3-D printing approach produces customized, from the bottom up, nanostructures on demand. The technology paves the way to maskless fabrication of custom 1-, 2-, and 3-D architectures on virtually any material and surface shape. The materials can have specific plasmonic behaviors. Plasmonic oscillations encode more data than possible with conventional technologies. Thus, this advance may speed the advent of novel light sources, sensor devices and ultra-dense information storage technologies.

Summary

Structures on the scale of nanometers—much smaller than wavelengths of light—may improve transmission of plasmons, or small waves of electron density created when light hits an electron conductor, such as a metal. To 3-D print nanoscale shapes with controlled properties, researchers integrated design, simulation and experiment. They used pattern sequencing to guide focused electron beams in inducing deposition of organometallic precursor molecules on a surface. Then, they removed residual carbon via in situ purification with water vapor to produce purely metallic freestanding 3-D nanostructures—an advance over previous 2-D nanoprinting with materials that contained significant carbon in addition to the desired metal. The structure that was produced—akin to the outline of up- and down-facing pyramids connected at their bases—demonstrated high plasmonic resonance at branches and tips. On-demand 3-D printing can take place on virtually any material and surface shape, pushing nanoscale optical, mechanical, magnetic and even multifunctional materials beyond current limits and paving the way to functional plasmonic architectures for next-generation photonic, photovoltaic and data-storage technologies.

Funding

The Oak Ridge National Laboratory portion of this research was supported by the Center for Nanophase Materials Sciences (CNMS), a U.S. Department of Energy Office of Science user facility at Oak Ridge National Laboratory. The University of Graz (CNMS users) research received funding from the European Union 7th Framework programme [FP7/2007-2013] (Enabling Science and Technology through European Electron Microscopy (ESTEEM2)). Individual researchers received support from Chemistry for ELectron-Induced NAnofabrication (CELINA) European Cooperation in Science and Technology (COST) Action, the Eurostars project triple-scanning microscope (TRIPLE-S), and the Chancellor’s Fellowship program at the University of Tennessee. 

Publications

R. Winkler, F.P. Schmidt, U. Haselmann, J.D. Fowlkes, B.B. Lewis, G. Kothleitner, P.D. Rack, and H. Plank, “Direct-write 3D nanoprinting of plasmonic structures.” ACS Applied Materials & Interfaces 9(9), 8233-8240 (2017). [DOI: 10.1021/acsami.6b13062]

You Might Also Like

Filed Under: Uncategorized

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • 12VAC to 12VDC 5A on 250ft 12AWG
  • Lightbox circuit help
  • Battery sensing circuitry for coin cell application
  • Input impedance matching network
  • Voltage Regulator Sizing Question

RSS Current Electro-Tech-Online.com Discussions

  • Python help with keystroke entries
  • Do resistors fail like dominoes?
  • Lightbox circuit
  • Kawai KDP 80 Electronic Piano Dead
  • Fuel Auto Shutoff
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy