• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

One Billion Suns: World’s Brightest Laser Sparks New Behavior in Light

June 28, 2017 By University of Nebraska-Lincoln

Using the brightest light ever produced, University of Nebraska-Lincoln physicists obtained this high-resolution X-ray of a USB drive. The image reveals details not visible with ordinary X-ray imaging. Image credit: Extreme Light Laboratory|University of Nebraska-Lincoln

Physicists from the University of Nebraska-Lincoln are seeing an everyday phenomenon in a new light.

By focusing laser light to a brightness one billion times greater than the surface of the sun – the brightest light ever produced on Earth – the physicists have observed changes in a vision-enabling interaction between light and matter.

Those changes yielded unique X-ray pulses with the potential to generate extremely high-resolution imagery useful for medical, engineering, scientific and security purposes. The team’s findings, detailed June 26 in the journal Nature Photonics, should also help inform future experiments involving high-intensity lasers.

Donald Umstadter and colleagues at the university’s Extreme Light Laboratory fired their Diocles Laser at helium-suspended electrons to measure how the laser’s photons – considered both particles and waves of light – scattered from a single electron after striking it.

Under typical conditions, as when light from a bulb or the sun strikes a surface, that scattering phenomenon makes vision possible. But an electron – the negatively charged particle present in matter-forming atoms – normally scatters just one photon of light at a time. And the average electron rarely enjoys even that privilege, Umstadter said, getting struck only once every four months or so.

Though previous laser-based experiments had scattered a few photons from the same electron, Umstadter’s team managed to scatter nearly 1,000 photons at a time. At the ultra-high intensities produced by the laser, both the photons and electron behaved much differently than usual.

“When we have this unimaginably bright light, it turns out that the scattering – this fundamental thing that makes everything visible – fundamentally changes in nature,” said Umstadter, the Leland and Dorothy Olson Professor of physics and astronomy.

A photon from standard light will typically scatter at the same angle and energy it featured before striking the electron, regardless of how bright its light might be. Yet Umstadter’s team found that, above a certain threshold, the laser’s brightness altered the angle, shape and wavelength of that scattered light.

“So it’s as if things appear differently as you turn up the brightness of the light, which is not something you normally would experience,” Umstadter said. “(An object) normally becomes brighter, but otherwise, it looks just like it did with a lower light level. But here, the light is changing (the object’s) appearance. The light’s coming off at different angles, with different colors, depending on how bright it is.”

That phenomenon stemmed partly from a change in the electron, which abandoned its usual up-and-down motion in favor of a figure-8 flight pattern. As it would under normal conditions, the electron also ejected its own photon, which was jarred loose by the energy of the incoming photons. But the researchers found that the ejected photon absorbed the collective energy of all the scattered photons, granting it the energy and wavelength of an X-ray.

The unique properties of that X-ray might be applied in multiple ways, Umstadter said. Its extreme but narrow range of energy, combined with its extraordinarily short duration, could help generate three-dimensional images on the nanoscopic scale while reducing the dose necessary to produce them.

Those qualities might qualify it to hunt for tumors or microfractures that elude conventional X-rays, map the molecular landscapes of nanoscopic materials now finding their way into semiconductor technology, or detect increasingly sophisticated threats at security checkpoints. Atomic and molecular physicists could also employ the X-ray as a form of ultrafast camera to capture snapshots of electron motion or chemical reactions.

As physicists themselves, Umstadter and his colleagues also expressed excitement for the scientific implications of their experiment. By establishing a relationship between the laser’s brightness and the properties of its scattered light, the team confirmed a recently proposed method for measuring a laser’s peak intensity. The study also supported several longstanding hypotheses that technological limitations had kept physicists from directly testing.

“There were many theories, for many years, that had never been tested in the lab, because we never had a bright-enough light source to actually do the experiment,” Umstadter said. “There were various predictions for what would happen, and we have confirmed some of those predictions.

“It’s all part of what we call electrodynamics. There are textbooks on classical electrodynamics that all physicists learn. So this, in a sense, was really a textbook experiment.”

DesignFast Banner version: 2cc05e56

Filed Under: Artificial intelligence

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 7
See More >

Current Digital Issue

Our second 5G Handbook is now available

Featuring 15 articles, the 2022 5G Handbook looks at private networks, timing, connectivity, latency, mmWaves, test, and other topics.

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • How do you find the angle made by two isosceles triangles in a kite?
  • Thermal pad construction on pcb
  • FPGA LVDS with separate clock
  • Help understanding 915MHz transciever pcb layout
  • Ansys Electronic Desktop (HFSS) file opening failed????

RSS Current Electro-Tech-Online.com Discussions

  • Flickering (candle) LED to trigger 555
  • Identify a circuit.
  • Microcontrollable adjustable and switchable constant current source for driving LED's
  • Useful Handbook for Making Low Level Measurements
  • CRYPTOOOOO, but wait i am no terrorist

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy