• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Perovskite Solar Cells Reach Record Long-Term Stability, Efficiency Over 20 Percent

September 28, 2017 By Ecole Polytechnique Fédérale de Lausanne (EPFL)

Structure of ?-CuSCN and cross-sectional SEM micrograph of a complete solar cell. Image credit: M. Ibrahim Dar/EPFL

Perovskite solar cells (PSCs) can offer high light-conversion efficiency with low manufacturing costs. But to be commercially viable, perovskite films must also be durable and not degrade under solar light over time. EPFL scientists have now greatly improved the operational stability of PSCs, retaining more than 95% of their initial efficiencies of over 20 % under full sunlight illumination at 60oC for more than 1000 hours. The breakthrough, which marks the highest stability for perovskite solar cells, is published in Science.

Challenges of stability

Conventional silicon solar cells have reached a point of maturation, with efficiencies plateauing around 25% and problems of high-cost manufacturing, heavyweight, and rigidity has remained largely unresolved. On the contrary, a relatively new photovoltaic technology based on perovskite solar cells has already achieved more than 22% efficiency.

Given the vast chemical versatility, and the low-cost processability of perovskite materials, the PSCs hold the promise to lead the future of photovoltaic technology by offering cheap, light weight and highly efficient solar cells. But until now, only highly expensive, prototype organic hole-transporting materials (HTMs,selectively transporting positive charges in a solar cell) have been able to achieve power-conversion efficiencies over 20%. And by virtue of their ingredients, these hole-transporting materials adversely affect the long-term operational stability of the PSC.

Therefore, investigating cheap and stable hole transporters that produce equally high efficiencies is in great demand to enable large-scale deployment of perovskite solar cells. Among various inorganic HTMs, cuprous thiocyanate (CuSCN) stands out as a stable, efficient and cheap candidate ($0.5/gr versus $500 /gr for the commonly used spiro-OMeTAD). But previous attempts to use CuSCN as a hole transporter in perovskite solar cells have yielded only moderately stabilized efficiencies and poor device stability, due to problems associated with depositing a high-quality CuSCN layer atop of the perovskite film, as wells as the chemical instability of the CuSCN layer when integrated into a perovskite solar cell.

A stable solution

Now, researchers at Michael Grätzel’s lab at EPFL, in a project led by postdocs Neha Arora and M. Ibrahim Dar, have introduced two new concepts that overcome the major shortcomings of CuSCN-based perovskite solar cells. First, they developed a simple dynamic solution-based method for depositing highly conformal, 60-nm thick CuSCN layers that allows the fabrication of perovskite solar cells with stabilized power-conversion efficiencies exceeding 20%. This is comparable to the efficiencies of the best performing, state-of-the-art spiro-OMeTAD-based perovskite solar cells.

Second, the scientists introduced a thin spacer layer of reduced graphene oxide between the CuSCN and a gold layer. This innovation allowed the perovskite solar cells to achieve excellent operational stability, retaining over 95% of their initial efficiency while operating at a maximum power point for 1000 hours under full-sun illumination at 60 °C. This surpasses even the stability of organic HTM-based perovskite solar cells that are heavily researched and have recently dominated the field.

The researchers also discovered that the instability of the perovskite devices originates from the degradation of CuSCN/gold contact during the solar cell’s operation.

“This is a major breakthrough in perovskite solar-cell research and will pave the way for large-scale commercial deployment of this very promising new photovoltaic technology,” says Michael Grätzel. “It will benefit the numerous scientists in the field that have been intensively searching for a material that could replace the currently used, prohibitively expensive organic hole-transporters,” adds M. Ibrahim Dar.

You Might Also Like

Filed Under: Power Electronic Tips

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Five challenges for developing next-generation ADAS and autonomous vehicles

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • How to simulate a microstrip gap with such a reference plane
  • Phase Shift Full Bridge suffers spurious FET turn_ON
  • optimum spacing between feed and sub reflector
  • Equipment to see if household should buy battery/solar/inverter?
  • 'HERIC' pairs of IGBTs essential for Mains inverters

RSS Current Electro-Tech-Online.com Discussions

  • Epson crystal oscillators
  • Adhesive Defibrillator Pad Cable
  • Simple LED Analog Clock Idea
  • Fun with AI and swordfish basic
  • Microinverters and storeage batteries?
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy