• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Photos of the Day: 3.5 Mile-High Martian Mound

May 7, 2013 By Princeton University

Mars panarama

Researchers based at Princeton University, the California Institute of Technology and Ashima Research suggest that Mars’ roughly 3.5-mile high Mount Sharp (above) most likely emerged as strong winds carried dust and sand into Gale Crater where the mound sits. If correct, the research could dilute expectations that the mound is the remnant of a massive lake, which would have important implications for understanding Mars’ past habitability. (Image by NASA/JPL-Caltech/MSSS)

Read: New Analysis Suggests Wind, Not Water, Formed Mound on Mars

Mars bedding

The researchers report that air would have flowed up the crater rim (red arrows) and the flanks of Mount Sharp (yellow arrows) in the morning when the Martian surface warmed, and reversed in the cooler late afternoon. The researchers created a computer model showing that the fine dust carried by these winds could accumulate over time to build a mound the size of Mount Sharp even if the ground were bare from the start. The blue arrows indicate the more variable wind patterns on the floor of the crater, which includes the Curiosity landing site (marked by the “x”). (Image by NASA/JPL-Caltech/ESA/DLR/FU Berlin/MSSS)

Mars wind

Features of Mount Sharp are more consistent with wind deposition rather than an ancient lakebed, the researchers reported. Satellite images show that the various layers of sediment that make up Mount Sharp likely did not extend to the crater wall and also display a consistent tilt, or “dip,” away from the center of the mound. The red dots denote dip areas with the average degree of slope indicated. The yellow star marks the landing site of the NASA Curiosity Mars rover. (Image from Kevin Lewis)

You Might Also Like

Filed Under: Automotive/Transportation

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

zonal architecture

Addressing zonal architecture challenges in the automotive industry

zonal architecture

Addressing zonal architecture challenges in the automotive industry

A2L refrigerants drive thermal drift concerns in HVAC systems

Why outdoor charging demands specialized battery connectors

How Li-ion batteries are powering the shift in off-highway equipment

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Designing for Serviceability: The Role of Interconnects in HVAC Maintenance

From Control Boards to Comfort: How Signal Integrity Drives HVAC Innovation

Built to Withstand: Sealing and Thermal Protection in HVAC Sub-Systems

Revolutionizing Manufacturing with Smart Factories

Smarter HVAC Starts at the Sub-System Level

Empowering aerospace E/E design and innovation through Siemens Xcelerator and Capital in the Cloud

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Dynacord enter protect
  • Need suggestions in task NI6363 retrigger (analog trigger)
  • Monte-Carlo simulation error on ADE-XL
  • Special FETs for LLC
  • Broad band impedance matching network for loop antenna using transformer for wireless power transfer

RSS Current Electro-Tech-Online.com Discussions

  • Sump pit water alarm - Kicad 9
  • Fun with AI and swordfish basic
  • turbo jet fan - feedback appreciated.
  • SiC FET disadvantages
  • Current sources in parallel...
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy