• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Physicists Create Exoskeleton For Shape-Shifting, Cell-Sized Robots

January 4, 2018 By Jennifer DeLaOsa

Are you ready for robots the size of a human cell with shape-shifting and environment-sensing capabilities armed with electronic, chemical, and photonic payloads?  

“You could put the computational power of the spaceship Voyager onto an object the size of a cell,” says Cornell University Physicist Itai Cohen. “Then, where do you go explore?” 

Thanks to the Cornell University team, that reality moved one step closer. Researchers have successfully built an exoskeleton for these small-scale creatures. When it detects chemical or thermal fluctuations in its environment, the exoskeleton quickly alters its shape.  

“We are trying to build what you might call an ‘exoskeleton’ for electronics,” says Paul McEuen, the John A. Newman Professor of Physical Science and director of the Kavli Institute at Cornell for Nanoscale Science. “Right now, you can make little computer chips that do a lot of information-processing … but they don’t know how to move or cause something to bend.” 

In order for the machines to move, they enlist the help of bimorph motors. Comprised of two materials, this study uses glass and graphene. When a certain stimulus is applied, the materials bend. Researchers can take advantage of this by placing rigid flat panels at specific locations, allowing control over which location contorts, thus creating folds. These folds can create a variety of structures, such as cubes or tetrahedra.

According to the Cornell Chronicle, one of their folded machines was “three times larger than a red blood cell and three times smaller than a large neuron.”

Compatible with semiconductor manufacturing and strong enough to carry electronic payloads, the team’s design boasts a few significant advantages. 

The article, “Graphene-based bimorphs for micron-sized, autonomous origami machines,” in the journal Proceedings of the National Academy of Sciences outlines the full details of the research.  

You Might Also Like

Filed Under: Uncategorized

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Five challenges for developing next-generation ADAS and autonomous vehicles

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • High Side current sensing
  • Xiaomi Mijia 1C Robot problem of going backwards while working
  • Multiple DC/DC converters and a single input source
  • Will this TL084C based current clamp circuit work?
  • Cadence LVS bug I do not understand on 12T XOR gate

RSS Current Electro-Tech-Online.com Discussions

  • Curved lines in PCB design
  • using a RTC in SF basic
  • Parts required for a personal project
  • Wideband matching an electrically short bowtie antenna; 50 ohm, 434 MHz
  • PIC KIT 3 not able to program dsPIC
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy