• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
      • Power Electronics & Programmable Power
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Promising Route to the Scalable Production of Highly Crystalline Graphene Films

August 25, 2016 By Osaka University

Researchers discovered a procedure to restore defective graphene oxide structures that cause the material to display low carrier mobility. By applying a high-temperature reduction treatment in an ethanol environment, defective structures were restored, leading to the formation of a highly crystalline graphene film with excellent band-like transport. These findings are expected to come into use in scalable production techniques of highly crystalline graphene films.

Graphene is a material with excellent electric conductivity, mechanical strength, chemical stability, and a large surface area. Its structure consists of a one-atom-thick layer of carbon atoms. Due to its positive attributes, research on its synthesis and application to electronic devices is being conducted around the world. While it is possible to create graphene from graphene oxide (GO), a material produced by chemical exfoliation from graphite through oxidative treatment, this treatment causes defective structures and the existence of oxygen-containing groups, causing GO to display low conducting properties. So far, carrier mobility, the basic indicator with which transistor performance is expressed, remained at a few cm2/Vs at most. A group of researchers led by Ryota Negishi, assistant professor, and Yoshihiro Kobayashi, professor, Graduate School of Engineering, Osaka University; Masashi Akabori, associate professor, Japan Advanced Institute of Science and Technology; Takahiro Ito, associate professor, Graduate School of Engineering, Nagoya University; and Yoshio Watanabe, Vice Director, Aichi Synchrotron Radiation Center, have developed a reduction treatment through which the crystallinity of GO was drastically improved.

The researchers coated a substrate with 1-3 extremely thin layers of GO and added a small amount of ethanol to the up to 1100°C high temperature reduction process. The addition of the carbon-based ethanol gas led to the effective restoration of the defective graphene structure. For the first time in the world, this group managed to observe a band-like transport reflecting the intrinsic electric transport properties in chemically reduced GO films. Band-like transport is a conduction mechanism in which the carriers use the periodic electric mechanisms in solid crystals as a transmission wave. The observed band transport in this study achieved a carrier mobility of ~210 cm2/Vs, currently the highest level observed in chemically reduced GO films.

The successful creation of thin graphene films achieved through the above reduction method has opened up the possibility of their application in a diverse set of electronic devices and sensors. The findings of this research group form a milestone in the development of scalable materials that utilize graphene’s excellent physical properties.

This research was featured in Scientific Reports.

Filed Under: Power Electronic Tips

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

New Enterprise Solutions for 112 Gbps PAM4 Applications in Development from I-PEX

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • 3.7v to 5v dc to dc boost converter
  • Thyristor - Reverse Diodes and Reverse Blocking
  • Calculation of FET switch ON time for Boost PFC?
  • Inverting Preamp schematic
  • Suitable Stackup required for a high current carrying PCB

RSS Current Electro-Tech-Online.com Discussions

  • looking for resistor for my treadmill.
  • alternate of 80386/486 microprocessor
  • Right channel distortion on vintage fisher rs-2010
  • Basic questions about MOSFETS, Gate Drivers and Diodes
  • Neon Transformers for sale

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy