• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Protein aggregates could be key Parkinson’s clue

November 2, 2010 By Cornell University

Proteins perform almost every function our bodies require for life. But, they also can misbehave in myriad ways. By retracing the history of each abnormal reaction, biochemists aim to determine the events that lead to disease and to intervene in the process.

Collaborative research between Ithaca-based Cornell applied physicists and biochemists at Weill Cornell Medical College has yielded new clues into what happens when the Parkinson’s disease-associated protein alpha-synuclein undergoes abnormal aggregation. These findings are published in the Nov. 2 edition of Proceedings of the National Academy of Sciences (online Oct. 14).

Parkinson’s disease patients have dense lesions in their midbrains called Lewy bodies, which involve aggregates of alpha-synuclein. But it is still unclear whether Lewy bodies are a symptom of the disease or are themselves responsible for cell death. Many researchers surmise that smaller clusters (known as oligomers or aggregates) of alpha-synuclein protein could be responsible for initiating neurodegeneration.

The Cornell group, led by applied and engineering physics professor Watt W. Webb and Weill Cornell biochemistry professor David Eliezer, aimed to shed light on structural changes in alpha-synuclein. Using chemical solutions of fluorinated alcohol to trigger protein structural transitions, the researchers observed the formation of irregular, helical aggregates that may be similar to formations in the brain of Parkinson’s disease patients. These structures, some long and thin, and others inter-wound or spooled, could suggest alternative pathways to alpha-synuclein aggregation in the brain.

“These ringlike annular aggregates have been seen with atomic force microscopy before, and people have been interested in them for a long time,” said Valerie Anderson, first author and a graduate student in Webb’s lab. The research shows that the aggregates maybe involved in infiltrating healthy cells and causing disease, which could result in toxicity. (See accompanying electron nanoscopic images.)

The new Cornell experiments paint stunning visual evidence of a wide array of protein aggregates with varying molecular structures, some of which might be key to understanding Parkinson’s disease. In addition, the researchers identified early events in the assembly of these structures. By examining the interaction of types of polarized light with the alpha-synuclein protein, they observed rearrangements of the protein on the molecular level prior to aggregation. Additional changes in the molecular conformation occurred when the proteins stuck together; alpha-synuclein adopts a helical structure that converts to an aligned, sheetlike molecular assembly early in the aggregation process.

Understanding disease is like solving a mystery — a million clues yield nothing, but the right one could lead to new treatments. These latest results shed light on early events that occur when alpha-synuclein behaves badly, although more research must be done to determine whether similar events take place in the brains of Parkinson’s disease patients.

The researchers made use of microscopy and spectroscopy equipment at the Cornell Center for Materials Research, which is supported by the National Science Foundation. The research was also funded by the National Institutes of Health and the NSF Science and Technology Center program.

SOURCE

You Might Also Like

Filed Under: Uncategorized

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Integrating MEMS technology into next-gen vehicle safety features

Five challenges for developing next-generation ADAS and autonomous vehicles

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Designing for Serviceability: The Role of Interconnects in HVAC Maintenance

From Control Boards to Comfort: How Signal Integrity Drives HVAC Innovation

Built to Withstand: Sealing and Thermal Protection in HVAC Sub-Systems

Revolutionizing Manufacturing with Smart Factories

Smarter HVAC Starts at the Sub-System Level

Empowering aerospace E/E design and innovation through Siemens Xcelerator and Capital in the Cloud

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Safe Current and Power Density Limits in PCB Copper(in A/m² and W/m³) simulation
  • The Analog Gods Hate Me
  • Help with hall effect sensors for a milwuakee impact driver
  • How to find the resonance frequency and impedance of a planar spiral coil in HFSS?
  • Diode recovery test Irrm timing.

RSS Current Electro-Tech-Online.com Discussions

  • Raise your hand if your car had one of these:
  • Simple LED Analog Clock Idea
  • Kawai KDP 80 Electronic Piano Dead
  • Tektronix 2235 channel 1 trace unstable
  • How to make string LEDs?
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy