• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Putting Design & Production Tests in Their Place

October 14, 2013 By Dunstan Power, Director of ByteSnap Design

Recent high-profile product recalls and failures have shown that even the most experienced and well-funded company can fall down when it comes to product testing.

A product goes through two fundamental types of test. The first is of the design itself and the second is production testing of the product. These two categories have different aims and this article sets out to explore those differences.

Increasing pressure on timescales and the relentless pace of new technology introductions can pressurise companies to reduce design testing to a minimum. Conversely, production testing can be over-engineered to no great effect, resulting in increased production costs and a false sense of security, with testing of a design carried out in production, rather than testing of the quality of repetition of that design.

Design Testing

The aim of design testing is primarily to check that the design meets the requirements specification. Typically an engineer will check each feature of the design one at a time and then follow up with some form of system testing. The software team will then take over the design and report back any bugs that they find whilst they develop their code. Frequently large portions of hardware can’t be tested without software support, so validating the hardware design requires a combined effort. An engineer might only have a matter of weeks to test a design that may be in service for years, and manufactured in large quantities; within this testing window there are aspects of the design testing that need to be validated to build confidence, for instance: 

  1. Temperature and humidity range tests.
  2. Voltage input range and quality: Does the device work across the full voltage range it can be exposed to?
  3. EMC (ESD, immunity, emissions): This is a requirement for CE marking but is more than just box-ticking. It can reveal design weaknesses particularly with regard to immunity and ESD that could cause the type of random field errors that engineers hate.
  4. Mechanical fit: As well as the first PCB fitting in the case, will the production versions all fit when tolerances of case and PCB are taken into account?
  5. Signal integrity: Searching a board for signals that look wrong may seem like a scattergun approach, but it can reveal mid-level voltages or suspect clock waveforms that work in most cases, but will cause problems under stress.

Thorough design testing should yield a design that will be robust across the full range of component tolerances it can be built with, and in environments that the device is expected to inhabit. This design can then be put into production, where a production test regime is required.  

Production Testing

Production testing aims to test that each produced board is the same as the original “gold standard” board. It is different from design testing in that the production testing assumption is that the design is good. Ideally, production testing is fast with high coverage. There are a variety of tools used for production testing:  

Test Method Tests Advantages Disadvantages
Automatic Optical Inspection (AOI) / X-Ray Joint quality, component placement Quick   Can pick up problems that may degrade over time, or not be seen by other methods e.g. dry joints Limited by what is visible
JTAG Connectivity Memory tests Quick   Thorough, where coverage is good Many designs don’t support much JTAG test coverage
Bed of Nails Connectivity including analogue Quick   Thorough   Requires little operator expertise Big impact on the PCB layout if high coverage is to be achieved. This renders it unsuitable for high speed designs
Flying probe Connectivity including analogue Thorough   Doesn’t require PCB to be highly tailored for test method Slow   Expensive
Functional Tests the function of the product Cheap   Most similar operation to the product Coverage can be low   May require operator expertise
Burn-in Early life failure Potentially picks up early life failures that might escape the other tests. Based on the bathtub curve of component reliability showing that a significant proportion of field failures happen early on. It attempts to weed these out Expensive in terms of real-estate in a factory   The number of bugs that would be picked up is very limited in most cases   Can reduce product lifetime   Frequently of dubious value

Some of these test methods complement each other and are designed for different purposes, so AOI is rarely used as a sole test, but can be in conjunction with another method whereas burn-in is only an add-on test, rather than a replacement for any other test method. Some form of functional test is normally carried out on an assembled product, even if every component has already been tested in another way.

Production testing can be slowed by the retesting of components that have already been 100% tested by the supplier. If the manufacturer has confidence in the supplier, these tests are effectively redundant assuming that damage in shipping is not possible. Likewise the production testing should not seek to test whether the design is good, for example by testing all the limits of voltage and temperature that should have been covered by design testing. Such extra testing may unduly stress the board and decrease product lifetime as well as slowing the testing down.

A matrix should be drawn up examining what is tested by each method to minimise overlaps and thus reduce test time, whilst ensuring that coverage is high. As knowledge of the product and suppliers grows, the testing can be streamlined to accentuate testing of problematic areas and to reduce double testing (e.g. retesting components from suppliers).

In conclusion, production and design testing are both required but have different objectives. Design testing needs to be thorough enough to ensure that all produced boards work reliably, whilst production testing needs to ensure that each board is an exact copy of the original.

 

You Might Also Like

Filed Under: Artificial intelligence

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Integrating MEMS technology into next-gen vehicle safety features

Five challenges for developing next-generation ADAS and autonomous vehicles

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Designing for Serviceability: The Role of Interconnects in HVAC Maintenance

From Control Boards to Comfort: How Signal Integrity Drives HVAC Innovation

Built to Withstand: Sealing and Thermal Protection in HVAC Sub-Systems

Revolutionizing Manufacturing with Smart Factories

Smarter HVAC Starts at the Sub-System Level

Empowering aerospace E/E design and innovation through Siemens Xcelerator and Capital in the Cloud

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Diode recovery test Irrm timing.
  • Battery Deep Discharge – IC Workarounds?
  • The Analog Gods Hate Me
  • Safe Current and Power Density Limits in PCB Copper(in A/m² and W/m³) simulation
  • Why so few Phase shift full bridge controllers?

RSS Current Electro-Tech-Online.com Discussions

  • Wideband matching an electrically short bowtie antenna; 50 ohm, 434 MHz
  • The Analog Gods Hate Me
  • Simple LED Analog Clock Idea
  • PIC KIT 3 not able to program dsPIC
  • Parts required for a personal project
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy