• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Rad-hardened Arm MCU includes added embedded analog capabilities

April 28, 2021 By Charlie Flor

Deep space initiatives including planetary exploration, orbiter missions and space research require innovative spacecraft system technology providing connectivity and processing. To enable system designers better integration and higher performance while reducing development costs and time to market, COTS technologies and scalable solutions are increasingly used in space applications. Microchip Technology Inc. today announced the qualification of its SAMRH71 Arm-based microprocessor (MPU) and the availability of the SAMRH707 microcontroller (MCU), both implementing Arm Cortex-M7 SoC radiation-hardened technology.
Microchip’s SAMRH71 and SAMRH707 devices were developed with the support of the European Space Agency (ESA) and Centre National D’Etudes Spatiales (CNES), the French space agency, to further research and program initiatives.
 
Relying on the standard Arm Cortex-M7 architecture and the same peripherals as automotive and industrial processors, the SAMRH71 and SAMRH707 provide system development cost and schedule optimization by leveraging standard software and hardware tools from the consumer devices.
 
The SAMRH71, a radiation-hardened variant of Microchip’s COTS automotive SoC technology, provides a combination of space connectivity interfaces along with high-performance architecture with more than 200 Dhrystone MIPS (DMIPS). Designed for high-level radiation performance, extreme temperatures and high reliability, the SAMRH71’s Arm Cortex-M7 core is coupled with high-bandwidth communication interfaces such as SpaceWire, MIL-STD-1553, CAN FD and Ethernet with IEEE 1588 Generalized Precision Time Protocol (gPTP) capabilities. The device is fully ESCC qualified with support from CNES and compliant with MIL standard Class V and Q high-reliability grades, allowing systems to meet strict compliance requirements.
 
Extending the portfolio of Microchip’s radiation-hardened Arm Cortex-M7-based MCUs, the SAMRH707 device provides analog functions on top of a >100 DMIPS processor unit with Digital Signal Processing (DSP) capabilities, combined with space connectivity interfaces in a small footprint designed for high-level radiation performance, extreme temperatures and high reliability. The SAMRH707 enables a high level of integration embedding Static Random Access Memory (SRAM) and flash memory, high-bandwidth communication interfaces including SpaceWire, MIL-STD-1553 and CAN FD, along with analog functions such as a 12-bit Analog-to-Digital Converter (ADC) and Digital-to-Analog Converter (DAC).
 
With space-designed MCUs, MPUs and Field Programmable Gate Arrays (FPGAs), Microchip provides critical elements for the development of new systems. Microchip’s total system solutions span space-qualified, radiation-hardened and radiation-tolerant power, timing and clock devices, as well as connectivity and memory solutions.
 
To speed system design, developers can use the SAMRH71F20-EK and SAMRH707F18-EK evaluation boards. Microchip’s full ecosystem supports its SAMRH707 and SAMRH71 space processors and includes MPLAB® Harmony tools suite and third-party software services for space applications. Both Microchip devices are supported by the company’s Integrated Development Environment (IDE) for developing, debugging and software libraries. The devices are supported in MPLAB Harmony version 3.0.
 
The SAMRH71 ceramic package device is available in volume production quantities with QMLQ (SAMRH71F20C-7GB-MQ) and QMLV (SAMRH71F20C-7GB-SV) equivalent qualification levels. For applications requiring high volumes and cost-optimized structures, the SAMRH71 is available for printed circuit board design or evaluation in Ball Grid Array (BGA) plastic packaging. The SAMRH707 in a CQFP164 ceramic package is sampling today (SAMRH707F18A-DRB-E).

You may also like:


  • The Iridium global satcom system, Part 5: Advances and competition

Filed Under: Aerospace & Defense, Embedded, Microcontroller Tips, Microcontrollers Tagged With: microchiptechnologiesinc

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

New Enterprise Solutions for 112 Gbps PAM4 Applications in Development from I-PEX

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Constraining a combo path (Synopsys DC)
  • tetramax fault list
  • Tessent MBIST for memories with dedicated test clock
  • SDR with external LO input
  • Question about set_timing_derate

RSS Current Electro-Tech-Online.com Discussions

  • Question about ultrasonic mist maker
  • RF modules which can handle high number of bytes per second
  • Disabled son needs advice please
  • DIY bluetooth speaker
  • Pet Microchip scan

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy