• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Educational Assets
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Reality catches up with sci-fi in storm drones

June 3, 2013 By JUSTIN JUOZAPAVICIUS, Associated Press

In this April 2013 photo provided by Oklahoma State University, Team Black members from left, Amelia Wilson, Nathan Woody and Alyssa Avery prepare their aircraft for flight during SpeedFest III at Oklahoma State University, in Stillwater, Okla. Researchers at OSU are designing and building sleek, Kevlar-reinforced unmanned aircraft _commonly known as drones_ to fly into the nation's worst storms and send back real-time data to first responders and forecasters about how fierce they might become. (AP Photo/ Oklahoma State University, Gary Lawson)TULSA, Okla. (AP) — At the time it premiered, “Twister” put forth a fantastical science fiction idea: Release probes into a storm in order to figure out which tornadoes could develop into killers.

It’s no longer fiction. Oklahoma State University researchers are designing and building sleek, Kevlar-reinforced unmanned aircraft — or drones — to fly directly into the nation’s worst storms and send back real-time data to first responders and forecasters.

“We have all the elements in place that make this the right place for this study to occur,” said Stephen McKeever, Oklahoma’s secretary of science and technology. “We have the world’s best natural laboratory.”

Oklahoma is the heart of Tornado Alley, and has emerged battered, yet standing, from seven tornadoes with winds exceeding 200 mph — tied with Alabama for the most EF5 storms recorded. The May 20 tornado in Moore that killed 24 people was one of them. The federal government’s National Weather Center, with its laboratories and the Storm Prediction Center, are appropriately headquartered in Norman, but research is done statewide on Earth’s most powerful storms.

If all goes as planned, OSU’s research drones will detect the making of a tornado based on the humidity, pressure and temperature data collected while traveling through the guts of a storm — critical details that could increase lead time in severe weather forecasts.

The drones would also be equipped to finally answer meteorologists’ most pressing questions.

“Why does one storm spawn a tornado and the other doesn’t, and why does one tornado turn into an EF1 and another into an EF5?” asked Jamey Jacob, professor at OSU’s School of Mechanical and Aerospace Engineering, which is developing the technology.

The drones could be operating in roughly five years, designers estimate. But there are limitations on immediately using the technology, including current Federal Aviation Administration rules that mandate where and how drones can be safely launched in U.S. air space. The agency’s regulations also require operators of such machines to physically see the aircraft at all times, limiting the range to a mile or two.

Developers are seeking to get the same clearances as the military, where operators don’t have to see the aircraft at all times and can view data beamed via a satellite link.

The machines — which weigh up to 50 pounds— are safely controlled by operators with a laptop or iPad, cost a fraction of manned research aircraft and are more reliable than sending up weather balloons to divine a storm’s intentions. In its simplest form, a weather drone would go for about $10,000, researchers said, but models with more extensive storm-detecting equipment — like having the ability to drop sensors as it flies through a storm — could run $100,000.

Jacob started researching the need for such aircraft more than 20 years ago while an undergraduate at the University of Oklahoma, and arrived at OSU about seven years ago to continue his research. As a native Oklahoman with a long-held interest in the weather, developing the perfect storm-savvy technology has become a passion for him.

“Technology has really been catching up to what we wanted to do,” he said in an interview. And in the future, the drones could be used to monitor wildfires and send back information to firefighters so they don’t get outflanked by the blazes or they could fly over farmers’ crops to relay enhanced pictures of how well they are growing.

One of the storm models was supposed to have its test flight on the day of the Moore tornado. It was delayed by two days — to great success. Immediately after, OSU researchers posted a video of its flight on YouTube.

To researchers’ dismay, drones have developed a negative connotation lately, as some groups concerned about civil liberties strongly question the Obama administration’s use of armed Predator drones overseas as well as privacy issues. So, the weather researchers prefer “unmanned aircraft” to describe what they are working on, even though the word drone is also accurate.

“It’s so sad to me because I see the negatives people are always talking about, that it’s going to be a Big Brother surveillance system and the government is actually going to worsen society rather than benefit society, and our goals are the exact opposite,” said Jacob Stockton, a master’s student at OSU who is working on the project.

“It’s extremely rewarding to take the perspective that my work is being poured into helping others to avoid the tragedy that happened” at Moore, he said.

You Might Also Like

Filed Under: Uncategorized

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

Integrating MEMS technology into next-gen vehicle safety features

Five challenges for developing next-generation ADAS and autonomous vehicles

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

GaN reliability milestones break through the silicon ceiling

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills
contribute

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Designing for Serviceability: The Role of Interconnects in HVAC Maintenance

From Control Boards to Comfort: How Signal Integrity Drives HVAC Innovation

Built to Withstand: Sealing and Thermal Protection in HVAC Sub-Systems

Revolutionizing Manufacturing with Smart Factories

Smarter HVAC Starts at the Sub-System Level

Empowering aerospace E/E design and innovation through Siemens Xcelerator and Capital in the Cloud

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Industrial Relay Board Design for Motorcycle Use
  • Safe Current and Power Density Limits in PCB Copper(in A/m² and W/m³) simulation
  • The Analog Gods Hate Me
  • Egs002
  • Help with hall effect sensors for a milwuakee impact driver

RSS Current Electro-Tech-Online.com Discussions

  • Raise your hand if your car had one of these:
  • Simple LED Analog Clock Idea
  • Kawai KDP 80 Electronic Piano Dead
  • Tektronix 2235 channel 1 trace unstable
  • How to make string LEDs?
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy