• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Battery Power
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • 5G
    • Automotive/Transportation
    • EV Engineering
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Learn
    • eBooks / Handbooks
    • EE Training Days
    • Tutorials
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • White Papers
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • DesignFast
  • Videos
    • EE Videos and Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Bill’s Blogs
  • Advertise
  • Subscribe

Researchers Present Most Advanced Quantum Memory Prototype

April 11, 2018 By Jennifer DeLaOsa

An original multi-resonator broadband quantum memory-interface prototype layout was presented by researchers from two universities: Kazan Federal University and Kazan Quantum Center of Kazan National Research Technical University.

This design paves the way toward a universal memory solution for quantum computers, operating on superconducting qubits.

“The scheme of multi-resonator microwave quantum memory allowed for reaching 16.3 percent of quantum efficiency at room temperature, which was significantly better than other recent results in the world for microwave quantum memory in electronic ensembles at helium temperatures,” says Professor Sergey Moiseev, Director of Kazan Quantum Center.

“We also showed that quantum efficiency of such memory can be over 99 percent at sufficiently low temperatures used in quantum computer schemes on superconducting qubits,” Professor Moiseev adds.

Quantum computers improve upon conventional devices that store data as binary digits (bits). They use quantum bits (qubits), which increase speed and performance by existing in different states simultaneously.

There has been quite a bit of quantum advancements in recent news, including Google’s 72-qubit processor and a new silicon chip that can measure quantum mechanical behavior.

According to the researchers, Russia has produced a computing system of two superconducting qubits this month. In addition, Google and Harvard University are well on their way toward assembling the first 500-qubit computer prototypes.  

“The main achievements of these past years in quantum computing on superconducting qubits have not only been linked with the increase in the number of interacting qubits but also with a significant lengthening of a superconducting qubit’s lifetime—to 100 microseconds,” says Oleg Sherstyukov, co-author of the paper.

“However, it’s impossible to increase this time further because of fundamental laws of physics. In that regard, the problem of creating multi-qubit microwave quantum memory with a prolonged lifetime has become very pertinent,” Sherstyukov adds.

Read the published research, “Broadband multiresonator quantum memory-interface,” in the journal Scientific Reports to learn more.

You Might Also Like

Filed Under: Uncategorized

Primary Sidebar

EE Engineering Training Days

engineering

Featured Contributions

GaN reliability milestones break through the silicon ceiling

From extreme to mainstream: how industrial connectors are evolving to meet today’s harsh demands

The case for vehicle 48 V power systems

Fire prevention through the Internet

Beyond the drivetrain: sensor innovation in automotive

More Featured Contributions

EE Tech Toolbox

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“ee
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

R&D World Podcasts

R&D 100 Episode 10
See More >

Sponsored Content

Advanced Embedded Systems Debug with Jitter and Real-Time Eye Analysis

Connectors Enabling the Evolution of AR/VR/MR Devices

Award-Winning Thermal Management for 5G Designs

Making Rugged and Reliable Connections

Omron’s systematic approach to a better PCB connector

Looking for an Excellent Resource on RF & Microwave Power Measurements? Read This eBook

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • problem identifying pin purpose on PMA5-83-2WC+ amplifier
  • Voltage Regulator Sizing Question
  • Genetic algorithm code in matlab for cost optimization
  • SDR as wideband spectrum analyzer
  • GanFet power switch starts burning after 20 sec

RSS Current Electro-Tech-Online.com Discussions

  • Can I use this charger in every country?
  • using a RTC in SF basic
  • An Update On Tarrifs
  • Wish to buy Battery, Charger and Buck converter for 12V , 2A router
  • problem identifying pin purpose on PMA5-83-2WC+ amplifier
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Teardown Videos
  • Advertise with us
  • Contact us
  • About Us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy