• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Researchers Study Links Across U.S. Grids To Move Renewable Energy And Share Capacity

July 7, 2017 By Iowa State University

The nearly 4,000 wind turbines all over the Iowa countryside, totaling more than 6,900 megawatts, provided almost 37 percent of all in-state electricity production in 2016. That’s enough to power about 1.8 million homes.

But, on cool, windy days, when production is high and local demand is low, the market for any excess production is limited to the central and eastern states. No matter if western states are heating up and demand for power is peaking.

That’s because the country has three primary power grids – the Eastern Interconnection, the Western Interconnection and the Electric Reliability Council of Texas – and very little electricity moves among them. The eastern and western grids are separated by a seam that generally runs north and south of the Nebraska-Wyoming border.

As part of a $220 million Grid Modernization Initiative announced in January 2016 by the U.S. Department of Energy, Iowa State University’s James McCalley is working with researchers from national laboratories and the utility industry to study ways to tie the big eastern and western grids together.

The two-year, $1.5 million project is led by Aaron Bloom of the National Renewable Energy Laboratory based in Golden, Colorado.

“In Iowa, about 35 percent of our electricity is renewable energy,” said McCalley, an Anson Marston Distinguished Professor in Engineering and the Jack London Chair in Power Systems Engineering in the department of electrical and computer engineering. “If we want the rest of the country to be at 35 percent renewable energy, this is what you want to do.”

Independent grids

McCalley said the three major parts of the country’s grid developed independently over time. Each now operates out of sync with the others. That makes it very difficult to send power across the seams using conventional high voltage alternating current (HVAC) transmission. The only alternative is to use high voltage direct current (HVDC) transmission with power converters at either terminal.

With most of the country’s demand for power on the coasts, there was never a strong economic motivation to build transmission capacity across the grids, McCalley said. But, with today’s production of wind energy in the prairie states and solar energy in the desert states, there’s now strong economic motivation to move power among the grids.

Seven small HVDC connections have been built in the U.S. between the eastern and western grids with an eighth in Alberta, Canada – the transmission is made possible by back-to-back stations that convert HVAC from one grid to HVDC that can cross the seam and then back to HVAC for the other grid.

McCalley called the connections “very small threads” – they can carry nearly 1.5 gigawatts, in comparison to the country’s installed generation capacity of more than 1,000 gigawatts.

“We can use these threads for the economic exchange of energy across the seams, but not for much of that, relative to potential,” McCalley said.

Models and models

McCalley and his Iowa State research team – postdoctoral research associates Ali Jahanbani (now of the University of Calgary in Canada) and Hussam Nosair; and graduate students Armando Figueroa and Abhinav Venkatraman – have built computer models simulating 15 years of grid improvements and operations to study the best ways to generate power and transmit it to and from the eastern and western grids.

They’ve looked at four designs, all with the idea of boosting the nation’s use of renewable electricity:

  • Maintaining existing cross-seam capacity;
  • Increasing the capacity of the current system of back-to-back conversion stations along the grid seam;
  • Building major east-west transmission lines from the middle of one grid to the middle of the other, thus avoiding system bottlenecks close to the seam;
  • And building a “macrogrid” of major transmission lines that loop around the West and Midwest, with branches filling in the middle and connecting to the Southeast. This design connects the West Coast to the Midwest, allowing more wind and solar energy to move across the grids. It spans time zones, allowing different regions to transmit power back and forth, helping each other meet daily demand peaks. It also allows regions to help each other meet annual demand peaks by sharing excess capacity, thus growing capacity without building additional power plants.

Additional studies by the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory in Richland, Washington, are analyzing production costs and power flows.

The studies are new territory for the researchers.

“Nobody has studied interconnecting the Eastern and Western grids at this level before,” McCalley said. “It takes computer runs of six to eight hours to account for operation of and investment in both grids, spanning almost the entire nation over 15 years. And these runs must be repeated numerous times to address all four designs with various sensitivities on those designs.”

Those models indicate there are good reasons to connect and modernize the country’s biggest energy grids.

“There are two main drivers for benefits of cross-seams transmission,” McCalley said. “That’s wind energy moving from the middle of the U.S. to the coasts, and sharing of capacity between regions for reliability purposes.”

– 30 – 

Research partners

In addition to Iowa State, the National Renewable Energy Laboratory and the

Pacific Northwest National Laboratory, the seams study includes researchers from:

  • Argonne National Laboratory
  • Oak Ridge National Laboratory
  • Midcontinent Independent System Operator
  • Southwest Power Pool
  • Western Area Power Administration
DesignFast Banner version: 2cc05e56

Filed Under: Power Electronic Tips

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Effect of variable gain amplifier and LNA on the input RF signal's phase
  • Code Optimization
  • Cosmos DB with AT commands by using SIM868e
  • Natural Convection Heatsink for 80W power dissipation?
  • simple LSB explanation please

RSS Current Electro-Tech-Online.com Discussions

  • Review of electric circuit with Arduino
  • ICM7555 IC duty cycle limit at high frequency?
  • How to quickly estimate lead acid battery capacity ?
  • Battery charging indicator circuit design
  • intro to PI

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy