• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

How do RFID tags and reader antennas work?

May 2, 2017 By Aimee Kalnoskas

By Anil Pandey

RFID — Radio-Frequency Identification — provides a unique identifier for that object and just as a bar code or magnetic strip the RFID device must be scanned to retrieve the identifying information. An RFID system has three parts:

A scanning antenna
A transceiver with a decoder to interpret the data
A transponder – the RFID tag – that has been programmed with information

In most of the RFID system, tags are attached to all items that are to be tracked. These tags are made from a tiny tag-chip that is connected to an antenna. The tag chip contains memory which stores the product’s electronic product code (EPC) and other variable information so that it can be read and tracked by RFID readers anywhere. An RFID reader is a network connected device (fixed or mobile) with an antenna that sends power as well as data and commands to the tags. The RFID reader acts as an access point for RFID tagged items so that the tags’ data can be made available to business applications.

RFID Frequency Band Allocation
There are a number of RFID frequencies, or RFID frequency bands that systems may use. There is a total of four different RFID frequency bands or RFID frequencies that are used around the globe.

RFID Antennas
As part of the design of the RFID antenna, parameters such as the radiation resistance, bandwidth, efficiency, and Q all need to be considered, so that the resulting design for the RFID antenna meets the requirements and allows the required level of performance to be achieved. RFID antennas are tuned to resonate only to a narrow range of carrier frequencies that are centered on the designated RFID system frequency.

The RFID antenna propagates the wave in both vertical and horizontal dimensions. The field coverage of the wave and also its signal strength is partially controlled by the number of degrees that the wave expands as it leaves the antenna. While the higher number of degrees means a bigger wave coverage pattern it also means lower strength of the signal. Passive RFID tags utilize an induced antenna coil voltage for operation. This induced AC voltage is rectified to provide a voltage source for the device. As the DC voltage reaches a certain level, the device starts operating. By providing an energizing RF signal, a reader can communicate with a remotely located device that has no external power source such as a battery. According to the different functions in the RFID system, the RFID antennas can be divided into two classes: the tag antenna and the reader antenna.

Tag Antenna
Tag antennas collect energy and channel it to the chip to turn it on. Generally, the larger the tag antenna’s area, the more energy it will be able to collect and channel toward the tag chip, and the further read range the tag will have. Tag antennas can be made from a variety of materials; they can be printed, etched, or stamped with conductive ink, or even vapor deposited onto labels. The tag antenna not only transmits the wave carrying the information stored in the tag, but also needs to catch the wave from the reader to supply energy for the tag operation. Tag antenna should be small in size, low-cost and easy to fabricate for mass production. In most cases, the tag antenna should have omnidirectional radiation or hemispherical coverage. Generally, the impedance of the tag chip is not 50 ohm, and the antenna should realize the conjugate match with the tag chip directly, in order to supply the maximum power to the tag chip. Tag antenna may be a signal turn or multiple turns as shown here.

Reader Antenna
Reader antennas convert electrical current into electromagnetic waves that are then radiated into space where they can be received by a tag antenna and converted back to electrical current.

RFID Antenna Design
This design RFID system is used to track object placed on a storage rack. In this system, there is two component of RFID.

RFID Reader: this component is fit on the shelf and connected to data base computer system

RFID Tag: this component along with planar antenna is placed in tracking objects placed in store

When a particular object placed on the shelf or removed from the shelf, information of that object is automatically updated in database computer. The antenna is optimized to increasing the read accuracy and shortening the optimization phase. One more RFID transponder antenna designed at 13.5 MHz is shown below.

Planar Antenna for Ultra High Frequency (UHF) RFID Handheld Reader
This antenna consists of a microstrip-to-coplanar stripline transition, a meandered driven dipole, a closely-coupled parasitic element, and a folded finite-size ground plane. This Antenna is suitable for RFID handheld readers.

 

The post How do RFID tags and reader antennas work? appeared first on Analog IC Tips.

DesignFast Banner version: 22ccae6e

Filed Under: Analog IC Tips, Analog ICs, EE Forums, FAQ, Featured Tagged With: edaboardcom

Primary Sidebar

EE Training Center Classrooms

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • CUI Devices – CUI Insights Blog
  • EE Classroom: Power Delivery
  • EE Classroom: Building Automation
  • EE Classroom: Aerospace & Defense
  • EE Classroom: Grid Infrastructure
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 7
See More >

Current Digital Issue

April 2022 Special Edition: Internet of Things Handbook

How to turn off a smart meter the hard way Potential cyber attacks have a lot of people worried thanks to the recent conflict in Ukraine. So it might be appropriate to review what happened when cybersecurity fi rm FireEye’s Mandiant team demonstrated how to infiltrate the network of a North American utility. During this…

Digital Edition Back Issues

Sponsored Content

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

Siemens Analogue IC Design Simulation Flow

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Why is Analog Design so Hard????
  • UCC28070A controller ramp circuit implemented incorrectly?
  • DIY Oscilloscope
  • Why are inductor recommended pads so small?
  • PCB traces under SMD inductor?

RSS Current Electro-Tech-Online.com Discussions

  • UCC28070A ramp circuit is wrong?
  • Tricky Triacs
  • software PWM
  • IRS2453 the H circuit
  • Cannot see how to open a Mini DIN connector

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy