• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Electrical Engineering News and Products

Electronics Engineering Resources, Articles, Forums, Tear Down Videos and Technical Electronics How-To's

  • Products / Components
    • Analog ICs
    • Connectors
    • Microcontrollers
    • Power Electronics
    • Sensors
    • Test and Measurement
    • Wire / Cable
  • Applications
    • Automotive/Transportation
    • Industrial
    • IoT
    • Medical
    • Telecommunications
    • Wearables
    • Wireless
  • Resources
    • DesignFast
    • Digital Issues
    • Engineering Week
    • Oscilloscope Product Finder
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Women in Engineering
  • Videos
    • Teschler’s Teardown Videos
    • EE Videos and Interviews
  • Learning Center
    • EE Classrooms
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
      • Power Electronics & Programmable Power
    • FAQs
    • Ebooks / Tech Tips
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • 5G

Robot Garden Makes Coding More Accessible

February 18, 2015 By Adam Conner-Simons, CSAIL

A robotic garden demonstrates distributed algorithms via more than 100 origami robots that can crawl, swim, and blossom like flowers. Image credit: Jason Dorfman/CSAILHere’s one way to get kids excited about programming: a “robot garden” with dozens of fast-changing LED lights and more than 100 origami robots that can crawl, swim, and blossom like flowers.

A team from MIT’s Computer Science and Artificial Intelligence Lab (CSAIL) and the Department of Mechanical Engineering have developed a tablet-operated system that illustrates their cutting-edge research on distributed algorithms via robotic sheep, origami flowers that can open and change colors, and robotic ducks that fold into shape by being heated in an oven.

In a paper recently accepted to the 2015 International Conference on Robotics and Automation, researchers describe the system’s dual functions as a visual embodiment of their latest work in distributed computing, as well as an aesthetically appealing way to get more young students, and particularly girls, interested in programming.

The system can be managed via tablet or any Bluetooth-enabled device, either through a simple “control by click” feature that involves clicking on individual flowers, as well as a more advanced “control by code” feature where users can add their own commands and execute sequences in real-time.

“Students can see their commands running in a physical environment, which tangibly links their coding efforts to the real world,” says Lindsay Sanneman, who is lead author on the new paper. “It’s meant to be a launchpad for schools to demonstrate basic concepts about algorithms and programming.”

A robotic "sheep" is created through traditional print-and-fold origami techniques. Image credit: Joseph DelPreto/CSAILEach of the system’s 16 tiles are connected via Arduino microcontrollers and programmed via search algorithms that explore the space in different ways, including a “graph-coloring” algorithm that ensures that no two adjacent tiles ever share the same color.

“The garden tests distributed algorithms for over 100 distinct robots, which gives us a very large-scale platform for experimentation,” says CSAIL Director Daniela Rus, the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science and a co-author of the paper. “At the same time, we hope that it also helps introduce students to topics like graph theory and networking in a way that’s both beautiful and engaging.”

Rus previously helped develop a distributed system of robots that watered, harvested, and took various metrics of an actual vegetable garden using complex motion-planning and object-recognition algorithms.

Among the other researchers on the new project were PhD candidate Joseph DelPreto, postdocs Ankur Mehta and Shuhei Miyashita, and members of MIT Professor Sangbae Kim’s Biomimetics Robotics Lab, including undergraduates Debra Ajilo and Negin Abdolrahim Poorheravi.

Kim’s team developed eight distinct varieties of origami flowers — including lilies, tulips, and birds of paradise — which are embedded with printable motors that he says “allow them to blossom in very interesting ways.” The sheep robots were created via traditional print-and-fold origami techniques, while the magnet-powered ducks started as two-dimensional paper prints that were heated in an oven, causing them to automatically fold into shape.

    Magnet-powered "ducks" started as two-dimensional paper prints, which were then heated in an oven that caused them to automatically fold into shape. Image credit: Joseph DelPreto/CSAIL“Many elements of the garden can be made very quickly, including the pouch motors and the LED flowers,” DelPreto says. “We’re hoping that rapid fabrication techniques will continue to improve to the point that something like this could be easily built in a standard classroom.”
        
Sanneman and DelPreto showed off the current garden to local schools at CSAIL’s “Hour of Code” event in December, and say that they plan to incorporate it into a programming curriculum involving printable robots that they have developed for middle and high schools.

In the future, they also hope to make the garden operable by multiple devices simultaneously, and may even experiment with interactive auditory components by adding microphones and music that would sync to movements.

“Computer science has so many real-world applications that a lot of kids don’t see because they aren’t exposed to them from an earlier age,” Sanneman says. “That’s why we think there’s a lot of potential for tools like this.”

Filed Under: Robotics/Drones

Primary Sidebar

EE Training Center Classrooms.

EE Classrooms

Featured Resources

  • EE World Online Learning Center
  • RF Testing Basics
  • Power Supply Fundamentals
  • Women in Engineering
  • R&D 100 Podcast
Search Millions of Parts from Thousands of Suppliers.

Search Now!
design fast globle

R&D World Podcasts

R&D 100 Episode 8
See More >

Current Digital Issue

June 2022 Special Edition: Test & Measurement Handbook

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

Digital Edition Back Issues

Sponsored Content

New Enterprise Solutions for 112 Gbps PAM4 Applications in Development from I-PEX

Positioning in 5G NR – A look at the technology and related test aspects

Radar, NFC, UV Sensors, and Weather Kits are Some of the New RAKwireless Products for IoT

5G Connectors: Enabling the global 5G vision

Control EMI with I-PEX ZenShield™ Connectors

Speed-up time-to-tapeout with the Aprisa digital place-and-route system and Solido Characterization Suite

More Sponsored Content >>

RSS Current EDABoard.com discussions

  • Extract spice netlist from Prime Time
  • Ferrite torus on grounding conductor ?
  • Buck and Boost Problem -Charging
  • PIC32MK1024MCM064 I2C setup problem
  • Noise Analysis of a squaring circuit

RSS Current Electro-Tech-Online.com Discussions

  • Peltier control
  • question about speaker crossover
  • 5M pot alternative
  • Digital Display Information
  • How to set USB port as RS-485 entrance? How to interpret Growatt solar inverter commands?

Oscilloscopes Product Finder

Footer

EE World Online

EE WORLD ONLINE NETWORK

  • 5G Technology World
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Engineer's Garage
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

EE WORLD ONLINE

  • Subscribe to our newsletter
  • Lee's teardown videos
  • Advertise with us
  • Contact us
  • About Us
Follow us on TwitterAdd us on FacebookConnect with us on LinkedIn Follow us on YouTube Add us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy